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1 Milstein

1.1 Scheme

Let’s consider the following stochastic process

dXt = b(Xt)dt + O'(Xt)th

between t; and tx41 we have:

tht1 tht1
Ky = Xty +/ b(Xt)dt+/ o(Xe)dW (1)

tr tr

applying It6 on o between t; et t we get:

t 1 t
o(Xy) = a(th)+/ a/(Xs)dXs+§/ on(Xs)d < X, X >,
tr tr
t

_ U(th)+/tg/(Xs)(b(Xs)dt+U(XS)dW3)+;/ o(X)0(Xa)ds

tr tr

We only keep terms in order % with respect to At. We get

R

o(Xy) O'(th)—l—/ ol(Xs)o(Xs)dWs

ty
~ o(Xy,) + 0o/(Xy, )o (X, )(We = W)
Replacing in (1) we get

tk+1 tk+1
th+1 = th + / b(Xt)dt + J(th)(Wtk+1 - Wtk) + UI(th)U(th)/ (Wt - Wtk)dw&Q)

tr tr

We recall that
d(W2) = 2WdW; + dt

Then we easyly compute

(PS5 1
[ W= Wi = (W, — W) = a0

123

We replace in (2), and we get

tht1 1
th+1 = th- + / b(Xt)dt + U(th)(Wtk+1 - Wtk) + 50/(th)0-(th)((Wtk+l - Wtk)Q - At)

tr

Depending on the proxy we choose for jf:“ b(X;)dt, we get the explicit Milstein, or the implicit
Milstein scheme.

For .
k41

t

we get the explicit Milstein Scheme:

1
th+1 = th: + b(th)At + O(th)(Wtk+1 - Wtk) + §U/(th)U(th)((Wtk+1 - Wtk)2 - At)



And for
te+1
/ b(Xt)dt ~ b(th+l)At

ty

we get the implicit Milstein Scheme:

1
th+1 = th + b(th-H)At + U(th,)(Wtk,+1 - Wtk) + ial(th)a(th)((Wtk+1 - Wtk)Q - At)

1.2 Application to the Heston model and the log normal model for the
variance diffusion. Conditions for ensuring the positivity of the vari-
ance process while diffusing

1.2.1 Case Heston

In this model the dynamics of the variance is the following:
dVy = k(0 — V;)dt 4+ n+/VidW,
In relationship with the previous section we have that
b(Vi) = r(6 = V7)
And

o(Vi) =nv Vi
The Implicit Milstein is then
1
‘/tk+1 = ‘/tk + "{(9 - VYthrl)At + ULV, V;kaW + 1772(AW2 - At) (3)

Our aim is that the process keeps positive whil we are diffusing. We will find conditions on the
model parameters that will ensure this constraint.

From equation (3) we can write:

Vi, + (50 — 102 At 4+ 0/ Vi, AW + 12 AW?
1+ kAt

Vtk+1 =
_ N@AW)

The positivity of V;, ., only depends on the numerator of equation (4). We express the numerator
of equation (4) as a function of the brownian motion increase AW, as it is the only risky term,
uncontrollable, that can lead V3, , to negative values.

Let define the following function

1
g(AW) ==/ Vi, AW + anAVVz

We have )
> — p? i
N>V, + (k6 i VAL + I&lé{r/lg(AW)

And since
min g(AW) = —Vy,



We get

N > (k0 — inz)At

(kO — %nz)At is therefore a lower bound of N. This lower bound is reached almost certainly, as
well as g reaches it’s minimum. The brownian increase actually reaches any value in R with non null
probability.

Therefore (k6 — inz)At is exactly the function N minimum. And finally we get that a necessary and
sufficient condition for keeping the variance process positive is that

1
R — 217 >0 (5)
4
This condition is less restrictive than the condition for the continuous scheme, which is:

1
60— =n?>
K 277 >0

This means that even if the condition is not satisfied for continuous process, one can still have
positive variance within implicit Milshtein scheme, as long as we respect (5)

1.2.2 Case Log normal

The variance dynamics is given by the following equation

dVy = k(0 — V;)dt + nVidW,

The implicit Milstein scheme gives:

1
Vierr = Vi + 60 = Vi )AL+ 0V, AW + §n2‘/tk(AW2 — At)

And

Vi + (0 — 307 Vi, )AL + Vi AW + 50V, AW?

V =
b1 1+ kAt

N(AW)

D
Applying the same reasoning as in Heston case gives
1
Nonin = KOAL + SV, (1—n*At)

We thus get a sufficient (but not necessary) condition for the variance positivity in the log normal
case:

772At <1



2 1JK Scheme for the logarithm of the stock underlying

Let consider the following diffusion

d

% = p(t)dt + VPdWw,

t

AV, = b(Vy)dt+o(V,)dZ,
d<W,Z >, = pdt

typically p = %
We write it6 on the logarithm of S, and we get:

tht1 1 i1 ) tht1
In S, =InSy, +/ p(t)dt — */ Vi Pdt +/ VEdW,

tr 2 tr tr
The terms of the previous equation are approximated as following:

/ e = (i) At

123
et 2p 2p
| v G, v
k

The originality of the IJK scheme lies in the way the last term ( ﬁ:“ VFPdW,) is approximated.
Actually we will take into account the fact that when the correlation between the underlying and its
variance is not null, then the diffusion of the variance’s brownian motion, between two time steps, has
an impact on the stock. This impact will be catched.

Cholesky decomposition of the covariance matrix gives:

Wi = pZi + /(1 - p?) 2

where Z and Z+ are two independant brownian motions. We can thus write

L1 tht1 tht1
[ veaws = o [ vz V= / vz
tr tr
~ pVIAZ 4 \/ 1—p?)(VE  +VE)AZ*

We could stop at this order for writing our scheme. However it is shown in [1] pp 23-24, that in
expectation the error between the left hand term and its approximation (right hand term) is equal to

*ppV o (Vi J(AZ? — At)

We add this correction term and we finally get the IJK scheme:

InSy., =S, + pu(te)At — *(Vtm Vtip)At +pVEAZ + - \/ 1- ml + Vi) YAZL +
1
ipthiU(Wk)(AZQ — At)

That can be rewritten as follow

In Stk+1 =InS;, + M(tk)At — 7(V2p

te41

+ V)ALt + pVEAZ + - (V”

te4+1

+VE)(AW — pAZ) +

1
3PPV o (Vi )(AZ? — At)
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