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1 Milstein

1.1 Scheme

Let’s consider the following stochastic process

dXt = b(Xt)dt+ σ(Xt)dWt

between tk and tk+1 we have:

Xtk+1
= Xtk +

∫ tk+1

tk

b(Xt)dt+

∫ tk+1

tk

σ(Xt)dWt (1)

applying Itô on σ between tk et t we get:

σ(Xt) = σ(Xtk) +

∫ t

tk

σ′(Xs)dXs +
1

2

∫ t

tk

σ′′(Xs)d < X,X >s

= σ(Xtk) +

∫ t

tk

σ′(Xs)(b(Xs)dt+ σ(Xs)dWs) +
1

2

∫ t

tk

σ′′(Xs)σ
2(Xs)ds

We only keep terms in order 1
2 with respect to ∆t. We get

σ(Xt) ' σ(Xtk) +

∫ t

tk

σ′(Xs)σ(Xs)dWs

' σ(Xtk) + σ′(Xtk)σ(Xtk)(Wt −Wtk)

Replacing in (1) we get

Xtk+1
' Xtk +

∫ tk+1

tk

b(Xt)dt+ σ(Xtk)(Wtk+1
−Wtk) + σ′(Xtk)σ(Xtk)

∫ tk+1

tk

(Wt −Wtk)dWt(2)

We recall that
d(W 2

t ) = 2WtdWt + dt

Then we easyly compute∫ tk+1

tk

(Wt −Wtk)dWt =
1

2
((Wtk+1

−Wtk)2 −∆t)

We replace in (2), and we get

Xtk+1
' Xtk +

∫ tk+1

tk

b(Xt)dt+ σ(Xtk)(Wtk+1
−Wtk) +

1

2
σ′(Xtk)σ(Xtk)((Wtk+1

−Wtk)2 −∆t)

Depending on the proxy we choose for
∫ tk+1

tk
b(Xt)dt, we get the explicit Milstein, or the implicit

Milstein scheme.

For ∫ tk+1

tk

b(Xt)dt ' b(Xtk)∆t

we get the explicit Milstein Scheme:

Xtk+1
' Xtk + b(Xtk)∆t+ σ(Xtk)(Wtk+1

−Wtk) +
1

2
σ′(Xtk)σ(Xtk)((Wtk+1

−Wtk)2 −∆t)
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And for ∫ tk+1

tk

b(Xt)dt ' b(Xtk+1
)∆t

we get the implicit Milstein Scheme:

Xtk+1
' Xtk + b(Xtk+1

)∆t+ σ(Xtk)(Wtk+1
−Wtk) +

1

2
σ′(Xtk)σ(Xtk)((Wtk+1

−Wtk)2 −∆t)

1.2 Application to the Heston model and the log normal model for the
variance diffusion. Conditions for ensuring the positivity of the vari-
ance process while diffusing

1.2.1 Case Heston

In this model the dynamics of the variance is the following:

dVt = κ(θ − Vt)dt+ η
√
VtdWt

In relationship with the previous section we have that

b(Vt) = κ(θ − Vt)

And

σ(Vt) = η
√
Vt

The Implicit Milstein is then

Vtk+1
= Vtk + κ(θ − Vtk+1

)∆t+ η
√
Vtk∆W +

1

4
η2(∆W 2 −∆t) (3)

Our aim is that the process keeps positive whil we are diffusing. We will find conditions on the
model parameters that will ensure this constraint.

From equation (3) we can write:

Vtk+1
=

Vtk + (κθ − 1
4η

2)∆t+ η
√
Vtk∆W + 1

4η
2∆W 2

1 + κ∆t

=
N(∆W )

D
(4)

The positivity of Vtk+1
only depends on the numerator of equation (4). We express the numerator

of equation (4) as a function of the brownian motion increase ∆W , as it is the only risky term,
uncontrollable, that can lead Vtk+1

to negative values.
Let define the following function

g(∆W ) := η
√
Vtk∆W +

1

4
η2∆W 2

We have

N ≥ Vtk + (κθ − 1

4
η2)∆t+ min

∆W
g(∆W )

And since
min
∆W

g(∆W ) = −Vtk
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We get

N ≥ (κθ − 1

4
η2)∆t

(κθ − 1
4η

2)∆t is therefore a lower bound of N . This lower bound is reached almost certainly, as
well as g reaches it’s minimum. The brownian increase actually reaches any value in R with non null
probability.
Therefore (κθ− 1

4η
2)∆t is exactly the function N minimum. And finally we get that a necessary and

sufficient condition for keeping the variance process positive is that

κθ − 1

4
η2 ≥ 0 (5)

This condition is less restrictive than the condition for the continuous scheme, which is:

κθ − 1

2
η2 ≥ 0

This means that even if the condition is not satisfied for continuous process, one can still have
positive variance within implicit Milshtein scheme, as long as we respect (5)

1.2.2 Case Log normal

The variance dynamics is given by the following equation

dVt = κ(θ − Vt)dt+ ηVtdWt

The implicit Milstein scheme gives:

Vtk+1
= Vtk + κ(θ − Vtk+1

)∆t+ ηVtk∆W +
1

2
η2Vtk(∆W 2 −∆t)

And

Vtk+1
=

Vtk + (κθ − 1
2η

2Vtk)∆t+ ηVtk∆W + 1
2η

2Vtk∆W 2

1 + κ∆t

=
N(∆W )

D

Applying the same reasoning as in Heston case gives

Nmin = κθ∆t+
1

2
Vtk(1− η2∆t)

We thus get a sufficient (but not necessary) condition for the variance positivity in the log normal
case:

η2∆t ≤ 1
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2 IJK Scheme for the logarithm of the stock underlying

Let consider the following diffusion

dSt

St
= µ(t)dt+ V p

t dWt

dVt = b(Vt)dt+ σ(Vt)dZt

d < W,Z >t = ρdt

typically p = 1
2

We write itô on the logarithm of S, and we get:

lnStk+1
= lnStk +

∫ tk+1

tk

µ(t)dt− 1

2

∫ tk+1

tk

V 2p
t dt+

∫ tk+1

tk

V p
t dWt

The terms of the previous equation are approximated as following:∫ tk+1

tk

µ(t)dt ' µ(tk)∆t

∫ tk+1

tk

V 2p
t dt ' 1

2
(V 2p

tk+1
+ V 2p

tk
)∆t

The originality of the IJK scheme lies in the way the last term (
∫ tk+1

tk
V p
t dWt) is approximated.

Actually we will take into account the fact that when the correlation between the underlying and its
variance is not null, then the diffusion of the variance’s brownian motion, between two time steps, has
an impact on the stock. This impact will be catched.

Cholesky decomposition of the covariance matrix gives:

Wt = ρZt +
√

(1− ρ2)Z⊥
t

where Z and Z⊥ are two independant brownian motions. We can thus write

∫ tk+1

tk

V p
t dWt = ρ

∫ tk+1

tk

V p
t dZt +

√
(1− ρ2)

∫ tk+1

tk

V p
t Z

⊥
t

' ρV p
tk

∆Z +
1

2

√
(1− ρ2)(V p

tk+1
+ V p

tk
)∆Z⊥

We could stop at this order for writing our scheme. However it is shown in [1] pp 23-24, that in
expectation the error between the left hand term and its approximation (right hand term) is equal to

1

2
ρpV p

tk
σ(Vtk)(∆Z2 −∆t)

We add this correction term and we finally get the IJK scheme:

lnStk+1
= lnStk + µ(tk)∆t− 1

4
(V 2p

tk+1
+ V 2p

tk
)∆t+ ρV p

tk
∆Z +

1

2

√
(1− ρ2)(V p

tk+1
+ V p

tk
)∆Z⊥ +

1

2
ρpV p

tk
σ(Vtk)(∆Z2 −∆t)

That can be rewritten as follow

lnStk+1
= lnStk + µ(tk)∆t− 1

4
(V 2p

tk+1
+ V 2p

tk
)∆t+ ρV p

tk
∆Z +

1

2
(V p

tk+1
+ V p

tk
)(∆W − ρ∆Z) +

1

2
ρpV p

tk
σ(Vtk)(∆Z2 −∆t)
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