Realized Volatility of Volatility For a fixed maturity *

DIDIER KOUOKAP

7th April 2010

1 Preliminaries

Let remind the spot and variance diffusions in double log normal model:

$$\begin{array}{lcl} \frac{dF_t}{F_t} & = & \sqrt{V_t} dW_t^F \\ dV_t & = & \kappa (\hat{V}_t - V_t) dt + \eta_1 V_t dW_t^{SD} \\ d\hat{V}_t & = & c(\hat{V}_\infty - \hat{V}_t) dt + \eta_2 \hat{V}_t dW_t^{LD} \end{array}$$

with

$$\begin{array}{rcl} d < W^F, W^{SD} >_t &=& \rho_{SD} dt \\ d < W^F, W^{LD} >_t &=& \rho_{LD} dt \\ d < W^{SD}, W^{LD} >_t &=& \rho dt \end{array}$$

At a given time t, the Variance Swap starting at t with maturity T is given by

$$VS(t,T) = \mathbb{E}_t \left[\frac{1}{T-t} \int_t^T V_s ds \right]$$

At a given time t, a Variance Swap started at 0 with maturity T worths

$$VS(0,T)_{t} = \frac{1}{T} \int_{0}^{t} V_{s} ds + \mathbb{E}_{t} \left[\frac{1}{T} \int_{t}^{T} V_{s} ds \right]$$
$$= \frac{1}{T} \int_{0}^{t} V_{s} ds + \frac{T - t}{T} VS(t,T)$$

With a fixed maturity T, applying a dynamic with respect to t only, we get

$$\frac{dVS(0,T)_t}{VS(0,T)_t} = (...)dt + \frac{(T-t)}{T} \frac{dVS(t,T)}{VS(0,T)_t}$$
(1)

2 Realized Volatility of the Square Root of the variance Swap in double log normal Model

In double log normal model, Variance Swap is given by

$$VS(t,T) = \frac{1}{\kappa(T-t)} \left(V_t - \frac{\kappa(\hat{V}_t - V_{\infty})}{\kappa - c} - V_{\infty} \right) (1 - e^{-\kappa(T-t)}) + \frac{\kappa(\hat{V}_t - V_{\infty})}{c(T-t)(\kappa - c)} (1 - e^{-c(T-t)}) + V_{\infty}$$

Then, always with T fixed, we have

$$dVS(t,T) = (...)dt + \frac{\eta_1 V_t}{\kappa(T-t)} (1 - e^{-\kappa(T-t)}) dW_t^{SD} + \frac{\kappa \eta_2 \hat{V}_t}{(\kappa-c)(T-t)} \left(\frac{(1 - e^{-c(T-t)})}{c} - \frac{(1 - e^{-\kappa(T-t)})}{\kappa} \right) dW_t^{LD}$$

Using (1), we get

$$\begin{array}{lcl} \frac{dVS(0,T)_t}{VS(0,T)_t} & = & (...)dt + \frac{\eta_1}{\kappa T} \frac{V_t}{VS(0,T)_t} (1 - e^{-\kappa(T-t)}) dW_t^{SD} \\ & & + \frac{\kappa \eta_2}{(\kappa - c)T} \frac{\hat{V}_t}{VS(0,T)_t} \left(\frac{(1 - e^{-c(T-t)})}{c} - \frac{(1 - e^{-\kappa(T-t)})}{\kappa} \right) dW_t^{LD} \\ & = & (...)dt + \sqrt{VaVar_t} dW_t \end{array}$$

The realized variance of VS(0,T) is then given by

$$realizedVar(VS(0,T)) = \mathbb{E}_{0} \left[\frac{1}{T} \int_{0}^{T} VaVar_{t} dt \right]$$

$$= \frac{\eta_{1}^{2}}{\kappa^{2}T^{3}} \int_{0}^{T} (1 - e^{-\kappa(T-t)})^{2} \mathbb{E}_{0} \left[\frac{V_{t}^{2}}{VS(0,T)_{t}^{2}} \right] dt$$

$$+ \frac{\eta_{2}^{2}\kappa^{2}}{(\kappa - c)^{2}T^{3}} \int_{0}^{T} \left(\frac{(1 - e^{-c(T-t)})}{c} - \frac{(1 - e^{-\kappa(T-t)})}{\kappa} \right)^{2} \mathbb{E}_{0} \left[\frac{\hat{V}_{t}^{2}}{VS(0,T)_{t}^{2}} \right] dt$$

$$+ \frac{2\rho\eta_{1}\eta_{2}}{(\kappa - c)T^{3}} \int_{0}^{T} (1 - e^{-\kappa(T-t)}) \left(\frac{(1 - e^{-c(T-t)})}{c} - \frac{(1 - e^{-\kappa(T-t)})}{\kappa} \right) \mathbb{E}_{0} \left[\frac{V_{t}\hat{V}_{t}}{VS(0,T)_{t}^{2}} \right] dt$$

We make the approximations that the expressions into parenthesis are close to 1. And we have

$$realizedVaVar(VS(0,T)) = \frac{\eta_1^2}{\kappa^2 T^3} \int_0^T (1 - e^{-\kappa(T-t)})^2 dt + \frac{\eta_2^2 \kappa^2}{(\kappa - c)^2 T^3} \int_0^T \left(\frac{(1 - e^{-c(T-t)})}{c} - \frac{(1 - e^{-\kappa(T-t)})}{\kappa} \right)^2 dt + \frac{2\rho \eta_1 \eta_2}{(\kappa - c) T^3} \int_0^T (1 - e^{-\kappa(T-t)}) \left(\frac{(1 - e^{-c(T-t)})}{c} - \frac{(1 - e^{-\kappa(T-t)})}{\kappa} \right) dt$$

And finally, we calculate the realized volatility of the Variance Swap Square root, through the formula:

$$realized VoVol(0,T) = \frac{1}{2} \sqrt{realized Var(VS(0,T))}$$

We remind that for a rolling Variance Swap of maturity θ , the realized volatility of the Variance Swap square root is given by

$$realzdRollVoVol(\theta) = \frac{1}{2} \sqrt{\frac{\eta_1^2}{\kappa^2 \theta^2} (1 - e^{-\kappa \theta})^2 + \frac{\kappa^2 \eta_2^2}{\theta^2 (\kappa - c)^2} \left(\frac{(1 - e^{-c\theta})}{c} - \frac{(1 - e^{-\kappa \theta})}{\kappa} \right)^2 + \frac{2\rho \eta_1 \eta_2}{\theta^2 (\kappa - c)} (1 - e^{-\kappa \theta}) \left(\frac{(1 - e^{-c\theta})}{c} - \frac{(1 - e^{-\kappa \theta})}{\kappa} \right)^2}$$

Remarks

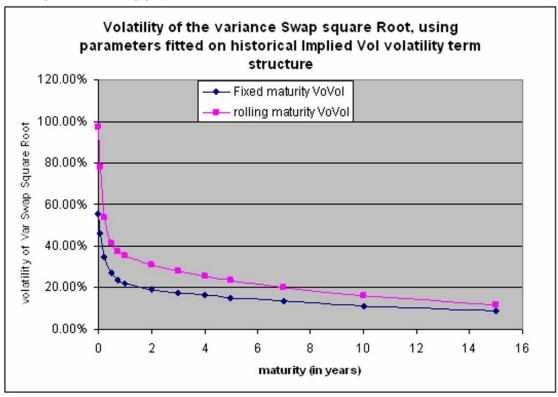
- \bullet The realized volatility of volatility is decreasing with the maturity T;
- As $T \longrightarrow 0^+$, realized $VoVol(0,T) \longrightarrow \frac{\eta_1}{2\sqrt{3}}$, which is it's maximum value;
- As $T \longrightarrow +\infty$, $realizedVoVol(0,T) \longrightarrow 0^+$;
- As $\theta \longrightarrow 0^+$, $realzdRollVoVol(\theta) \longrightarrow \frac{\eta_1}{2}$, which is it's maximum value;
- As $\theta \longrightarrow +\infty$, $realzdRollVoVol(\theta) \longrightarrow 0^+$;
- It seems like we have the inequality: $realzdRollVoVol(\theta) > realizedVoVol(0, \theta)$.

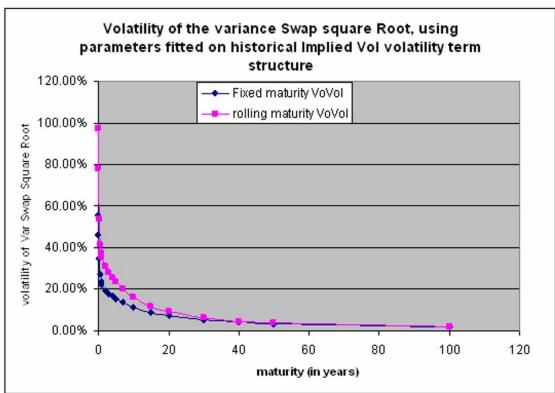
3 Numerical Tests

We focus on the STOXX 50E. First we use a set of parameters obtained by fitting the term structure of the historical rolling implied volatility's volatility, and the term structure of the correlation "Spot-Rolling Variance Swap" simultaneously:

	STOXX50E
κ	763.26%
С	20.35%
η_S	194.39%
η_L	73.89%
ρ	28.43%

We get the following graphics:

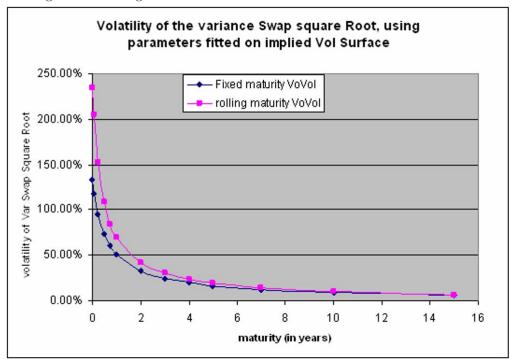




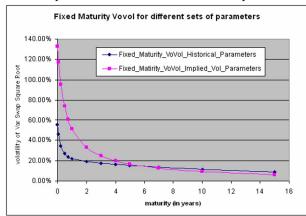
Then, we use a set of parameters got by calibrating the implied volatility surface, through a Monte Carlo pricer:

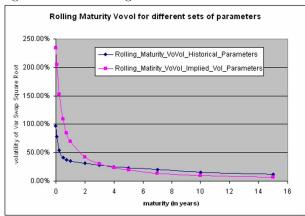
	STOXX50E
κ	446.00%
С	74.86%
η_S	455.96%
η_L	87.28%
ρ	63.59%

We get the following term structure



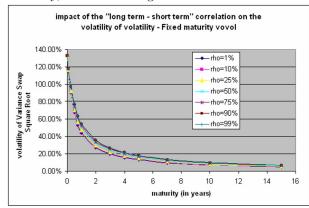
The comparison between the two sets of parameters is given on the next figure:

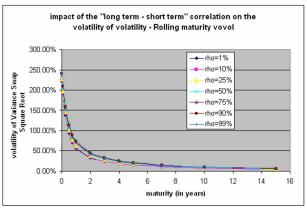




Impact of the "long term - short term" Correlation: ρ

In order to study the impact of the "long term - short term" Correlation on the term of volatility of volatility, we show the figures below:





It appears that ρ could have some impact around the mid term (1, 2, 3 years): about 15%. But It's impact is negligible around the short and the long term period.

References

[1] KOUOKAP YOUMBI D.: October 2008, 2 Factors Stochastic Volatility Models: Formula for the Variance Swap variance and asymptotic formula for the At The Money Forward (ATMF) Skew, *Internship Report*