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1 Preliminaries

Let remind the spot and variance diffusions in double log normal model:
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At a given time t, the Variance Swap starting at t with maturity T is given by
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With a fixed maturity T , applying a dynamic with respect to t only, we get
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2 Realized Volatility of the Square Root of the variance Swap
in double log normal Model

In double log normal model, Variance Swap is given by
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The realized variance of V S(0, T ) is then given by

realizedV ar(V S(0, T )) = E0

[
1

T

∫ T

0

V aV artdt

]

=
η21
κ2T 3

∫ T

0

(1− e−κ(T−t))2E0

[
V 2
t

V S(0, T )2t

]
dt

+
η22κ

2

(κ− c)2T 3

∫ T

0

(
(1− e−c(T−t))

c
− (1− e−κ(T−t))

κ

)2

E0

[
V̂ 2
t

V S(0, T )2t

]
dt

+
2ρη1η2

(κ− c)T 3

∫ T

0

(1− e−κ(T−t))
(

(1− e−c(T−t))
c

− (1− e−κ(T−t))
κ

)
E0

[
VtV̂t

V S(0, T )2t

]
dt

We make the approximations that the expressions into parenthesis are close to 1. And we have
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And finally, we calculate the realized volatility of the Variance Swap Square root, through the
formula:
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We remind that for a rolling Variance Swap of maturity θ, the realized volatility of the Variance
Swap square root is given by
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Remarks

• The realized volatility of volatility is decreasing with the maturity T ;

• As T −→ 0+, realizedV oV ol(0, T ) −→ η1
2
√
3
, which is it’s maximum value;

• As T −→ +∞, realizedV oV ol(0, T ) −→ 0+;

• As θ −→ 0+, realzdRollV oV ol(θ) −→ η1
2 , which is it’s maximum value;

• As θ −→ +∞, realzdRollV oV ol(θ) −→ 0+;

• It seems like we have the inequality: realzdRollV oV ol(θ) ≥ realizedV oV ol(0, θ).

3 Numerical Tests

We focus on the STOXX 50E. First we use a set of parameters obtained by fitting the term structure
of the historical rolling implied volatility’s volatility, and the term structure of the correlation ”Spot-
Rolling Variance Swap” simultaneously :

STOXX50E

κ 763.26%
c 20.35%
ηS 194.39%
ηL 73.89%
ρ 28.43%
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We get the following graphics:

Then, we use a set of parameters got by calibrating the implied volatility surface, through a Monte
Carlo pricer:
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STOXX50E

κ 446.00%
c 74.86%
ηS 455.96%
ηL 87.28%
ρ 63.59%

We get the following term structure

The comparison between the two sets of parameters is given on the next figure:
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Impact of the ”long term - short term” Correlation: ρ

In order to study the impact of the ”long term - short term” Correlation on the term of volatility of
volatility, we show the figures below:

It appears that ρ could have some impact around the mid term (1, 2, 3 years): about 15%. But It’s
impact is negligible around the short and the long term period.
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