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1 Preliminaries

Let remind the spot and variance diffusions in double log normal model:
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At a given time ¢, the Variance Swap starting at ¢ with maturity T is given by
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With a fixed maturity 7', applying a dynamic with respect to ¢ only, we get
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2 Realized Volatility of the Square Root of the variance Swap
in double log normal Model

In double log normal model, Variance Swap is given by
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Then, always with T fixed, we have
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Using (1), we get
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The realized variance of V.S(0,T) is then given by
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We make the approximations that the expressions into parenthesis are close to 1. And we have
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And finally, we calculate the realized volatility of the Variance Swap Square root, through the
formula:

1
realizedVoVol(0,T) = iJrealizedVar(VS(O, 7))
We remind that for a rolling Variance Swap of maturity 6, the realized volatility of the Variance
Swap square root is given by
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Remarks

e The realized volatility of volatility is decreasing with the maturity T’

e AsT — 0", realizedVoVol(0,T) — 27\’}57 which is it’s maximum value;

e As T — +o0, realizedVoVol(0,T) — 0F;

As 0 — 07, realzdRollVoVol(§) — -, which is it’s maximum value;

As 0 — +o00, realzdRollV oV ol(6) — 07;

o It seems like we have the inequality: realzdRollV oV ol(0) > realizedV oV 0l(0, ).

3 Numerical Tests

We focus on the STOXX 50E. First we use a set of parameters obtained by fitting the term structure
of the historical rolling implied volatility’s volatility, and the term structure of the correlation ” Spot-
Rolling Variance Swap” simultaneously :

| STOXX50E |
K 763.26%
c 20.35%
ns 194.39%
nL 7389%
P 28.43%




We get the following graphics:
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Then, we use a set of parameters got by calibrating the implied volatility surface, through a Monte
Carlo pricer:



| [ STOXX50E |

e 446.00%
c 74.86%
P 455.96%
n 87.28%
0 63.59%

We get the following term structure

Volatility of the variance Swap square Root, using
parameters fitted on implied Vol Surface
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The comparison between the two sets of parameters is given on the next figure:

volatility of Var Swap Square Root
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Impact of the ”long term - short term” Correlation: p

In order to study the impact of the "long term - short term” Correlation on the term of volatility of
volatility, we show the figures below:
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It appears that p could have some impact around the mid term (1, 2, 3 years): about 15%. But It’s
impact is negligible around the short and the long term period.
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