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Abstract

In this report, we provide formula for the zero-strike Variance Swap variance. We also provide asymp-
totic formula for the ATMF skew, in a context of three particular 2 factors Stochastic Volatility
Models. As application, we use these formula to calibrate the mean reversion parameters on the term
structure of Variance Swap variance.

Most products, especially those for which a static replication is possible, are priced using volatily
(local or stochastic) calibrated on market vanilla options (Puts and Calls). However, some exotic
products like Napoleon are very sensitive to some first or second order features (forward skew or/and
volatility of volatility) others than the vanilla prices. For pricing Napoleon for instance, Bergomi
illustrates in [4] that we need to be well calibrated on the volatility of volatility.

What we do in this report is to express, analytically, variance of Variance Swap as a function of
our models parameters. Then, we use these formula to fit term structure of historical variance of
implied variance®.

The fit is done through Powell algorithm combined with conjugated gradient. Calibration is very
fast (less than 3 minutes for a fit), but we need to find the accurate initial point that make the al-
gorithm converge. We obtain good results enough, and parameters we get are consistent with their
intuitive meanings.

*Implied Variance being the square of the implied volatility.
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Introduction

In order to replicate some exotic products such as Cliquet or Napoleon, we need to fit the term
structure of volatility of volatility, and the forward smile. There is no liquidity on these products.
However, we know that the inverse of mean reversion parameter is homogeneous to the time scale,
and moreover, volatility of volatility strongly depends on mean reversion parameters. Thus we can
fit the mean reversion parameters on the term structure of historical volatility volatility. But since
volatility is not a tradable product, we will fit historical Variance Swap variance.

In the first section we present the three 2 factors stochastic volatility models on which we work:
we write the models dynamics and we comment specifications of each model.

In section 2, for each of our three models, we express Variance Swap Variance as a function of model
parameters.

In section 3 we provide asymptotic formula for the ATMF Skew.

Section 4 deals with the computational results.



1 Models Presentation

For the sake of simplification, we suppose a zero interest rate. Or if one supposes that the underlying
is the forward, then we will have no drift term in the diffusion equation, under the risk neutral
Probability'.

1.1 2 Factors Balland’s Model

1.1.1 Model dynamic

In this Model, the underlying diffuses as follow:

dF,
— = Vawf
F
Vi = [VeeZEP+2EP —fvar(ZEP+2EP)
With
t
zZ7P = VSD/ ersp (= qyy s
0
t
ZtLD — ’yLD/ eALD(S—t)dWSLD
0
And
d<WF WP >, = pgpdt
d<WE WP >, = prpdt
d<WSP WEP ~, = pdt

. characterizes the long period duration and 11— the short period duration.

e 75D and Z*P are Ornstein Uhlenbeck processes with mean reversion A and 0 as long term
variance. In fact, we have

dZ} = =\ Zldt + ~;dW}
i € {SD,LD}

e There should be some relations between the parameters:

%%D
D~ 0@) &
SD
Asp >> 1 (2)
and
Asp >> 1 (3)
ALD

e Relation (1) ensures an equilibrium between term in dt and term in dW; within the diffusion
equation.

e Equations (2) and (3) are due to time scales. When (3) is satisfied, then there is separation
between short and long term. This implies:

- p=0;

— We can fit the long term and short term data separately;

TThe forward is a martingale under the risk neutral probability



1.1.2 Balland To SABR

In term of SDE*, we can rewrite the diffusion as follow:

dF,

— = VW

Fy

@ _ {2 2 4 2 2 4 4 A2 672/\3Dt A2 672/\LDt _
v, YsD YLD PYSDYLD — VYsD YLD

2p"ySD’yLD€7()\SD+>\LD)t — 2/\SDZ£SD — 2>\LDZtLD}dt + ZVSDthSD + Q’YLDthLD (4)
dzPP = —AspZPPdt + yspdW P

dzZEP = —AppZEPdt + yppdWEP
With
d<WE WP >, = pgpdt
d<WE¥ WP >, = prpdt
d< WP WEP ~, = pdt

In particular for Balland 1 factor (when Arp = 0 and v5,p = 0), for Asp = 0, equation (4) gives:

d
e _ y2dt 4 2ydW P
Vi

That is equivalent to

WV = ydW 2P
VVi
As a consequence, SABR model (with 8 = 1) can be seen as a particular case of 1 factor Balland
model. Since we already know how to handle SABR model, we can use this to have a first guess on
some Balland’s parameters. Or we can compare some Balland’s parameters to those of SABR with
B =1, in order to see how good is our Balland’s calibration.

1.2 Double Lognormal model (2 Factors Gatheral’s Model)

The underlying’s dynamic in this model is given by:

@ = \/‘7tthF
Fy
AV, = k(V; — V)dt +m Ve dW;P
AV = (Voo — Vi)t + 0o Vid WP
with
d<WE WP >, = pgpdt
d<WE¥ WP >, = prpdt
d< WP WEP >, = pdt

The mean reversion parameters here are x end c¢. They have the same meaning as Agp and A\pp
in Balland’s model respectively. 77 and 7, also have the same meaning as ysp and yrp respectively.

Variance here is a mean reversion process that reverts toward a process, that itself reverts toward

a long term level (V).

For times around 0, the variance reverts toward %. Then VO can be seen as the short term mean level
of the variance. Finally, Vj, Vi and V,, morally impose an intuitive term structure of the variance.

fStochastic Differential Equation



Gatheral’s model differs from Balland in many ways:

e In Balland, Variance is lognormal while in Gatheral it’s not. That may make calculus easier in
Balland.

e in Gatheral,Variance may be less sensitive to the long term parameters than in Balland

1.3 Double Heston model
In double Heston Model, the underlying dynamic is:

dF,
-t = VVdwf
F
av, = KV, = Vi)dt + i/ VedWoP
AV, = (Voo — Vi)t + 10/ VidWP
with
d<WF WP >, = pgpdt
d<WEF WP >, = prpdt
d< WP WEP ~, = pdt

The variance here diffuses as a CIR® model for the interest rate. And it reverts toward a process
that follows, itself, a CIR process and reverts toward a long duration level.

Both Gatheral and Double Heston models are particular cases of a global class of models called
double CEV, which can be written as follow:

F,
e vawr
Fy
av, = k(V, —V)dt +mVedwsP
AV = (Voo — Vi)t + a2V dWEP
with
d<WFEWSP >, = pgpdt
d<WEF WP >, = prpdt
d<W3P WEP ~, = pdt
And

o, B e [%;1}

For the same set of parameters:

{r = Asp = T40.17%; c = App = 10.48%;m = vsp = 272%; n2 = vLp = 33.2%; ps = —87.59%;
pL = —50.62%:; psr, = 2.73%: Vo = 5.78%: Vo = 5.20%; Voo = 6%}

We draw on the next figure the implied volatility on a 2 years maturity out of the money vanilla
options, for each of our three models.

§ Cox-Ingersoll-Ross



2 years maturity implied volatility on Out The Money vanilla
options
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We observe that Balland 2 Factors seems to be the most expensive for (I = &) under 100% and
the Cheapest for I over 100%.
Double Heston prices stay between Balland and Gatheral.



2 Calculation of zero-Strike rolling Variance Swap’s variance

In this section, for each of our three models, we will calculate the variance of a zero-strike variance
swap.

2.1 Preliminaries

Let us recall the following well-known definitions and results.

e Given an underlying that diffuses as

@ = ,utdt + O'tth
Sy

The realized variance on the underlying S between 0 and ¢ is given by

1 t
- / o2ds
t Jo

Writing [t6’s lemma on the logarithm of S, we get

dsS;

dhlSt = ?
t

1
Thus, the martingale part of In S is f osdWs. And the quadratic variation of In S is

¢
<InS,InS >t:/ o2ds
0

e The zero-strike forward Variance Swap starting at time t, with Maturity 6 is given by

t4+6
VSt,t+0) = Et(f/ o2ds)
t

1
0
1 t+6
= 5/ E(0?)ds
t
1 [tte
= 5[ Viads (5)
¢
where
Ei(.) =E(./F)
And

Vis=FEi(02);0<t<s

By differentiating the equation (5), we get:

1 t+0
dVS(t,t+0) = ) {(Vt,t+9 = Viu)dt +/ th,st} (6)
t



2.2 Zero-strike Variance Swap variance in 2 Factors Balland’s model
2.2.1 Calculation of forward variance in Balland’s: V,r =E;(Vp) V0 <t <T

‘We remind that
Vi = V06{2(Z§D+Z%D)*WT(Z§D+Z%D)}

For i € {SD ;LD}, we write
Zh= M7 4 Xy
Where
Xip = [ e Taw
t
Using the fact that (Xf%?, XtLjD) is gaussian, we get

Vir = %6{2[6)‘511(t_T)ZtSD+e*LD(t—T>ZtLD]+2Var(XtS’$+X£$)7Var(Z§D+Z%D)}

We write It6 on Vi p. We get (T is fixed)

d;/t’T - % (m{VéT }> dt + 26X =T qZ5D 4 oM (=T qzLD | 92Xsn(=T)q < 75D 757 5, 4
0T 0

2e2ALp(t=T) g ZLD,ZLD >, +4e()\SD+/\LD)(t—T)d < ZSD7ZLD >,
And since

SD LD ’Y?@D 2Xspt V%D 2XLpt PYSDYLD (Asp+ALp)t
Var(Z5P + zEPy = 18D (1 _ ¢=2xspty 4 LD (1 o~2Aip +27(1—e— sp w)
(2 ) 2/\SD< ) 2>\LD( ) Asp + ALp
And
2 2
Var(Xf$+Xf$) = 757’3(l—e*QASD(T*t))+7L7D(1_672ALD(T4))+2M (1 _ e*(ASD‘i’)\LD)(T*t))
' ’ 2Asp 2ALp Asp + ALp

We finally derive the following expression:

avir

T 2yspe 5P T NAWEP 4 2y peer(T=Daw P (7)

We find that forward variance is a local martingale under the risk neutral probability.

10



2.2.2 Calculation of the Variance Swap’s realized variance in Balland’s

We substitute (7) in (6). We obtain

t+0 t+0

t

2'VSDV;S,56>\SD(S_t)dS> dWFP + (/ 2’7LDVt,se/\LD(S_t)dS> thLD}

1
dVS(t,t+0) = ] {(Vt,t+9 = Vie)dt + (/

t

We then make the approximation that between t and ¢ + 6 we have V, s =~ VS(¢,t + 6). It means
that we assume a flat variance term structure between t and t + . Which may be realistic if the
maturity 6 is short.

The approximation leads to

dvs(t,t+6) 1 1 (2vsp —Asp0 sp, 1 (2D —ALp0 LD
- V)t~ 1—es00) g 1 1—eeof)) g
VSt 0) OV ire) e Vidity (/\SD (1—e Wert g\, e 7)) dws

We can thus easily calculate the quadratic variation of In(V'S(t,t + 6)) (with 6 fixed). The result
is

<In(VS(,.4+80)),In(VS(.,.+0)) >=

t (4p xspn2 , YiD “aLpo 2 | 8pYspYLD Aep —ALDo
. 1 . SD 1 _ LD 1 _ SD 1 _ LD
02 ( )\%'D ( e ) + )\%D ( € ) + )\SDALD ( € )( € )

The realized variance, between 0 and t, on the rolling (constant maturity §) Variance Swap is then

% <I(VS(,. +0),n(VS(,. +0) > =

1 (43p a0y, Yip “aLp0y2 , SPYSDYLD “Aspb “ALpO
- 1_ SD _ L 1_ LD e 1_ SD 1_ LD 8
5o (20— R een)?  BISBID o donya—event))

We observe that realized variance on Variance Swap strongly depends on mean reversion param-
eters Agp and Arp. So, catching the term structure of variance may be equivalent to obtain good
enough values for Agp and A\pp

11



2.3 Zero-strike Variance Swap variance in 2 Factors Gatheral’s model

(Double Log normal)
2.3.1 Calculation of forward variance in Gatheral’s: V,r =E,(Vp) V0<t<T

‘We have .
dV;, = k(V; — Vy)dt 4+ m VidW,P

Let vy = e"'V,. We have )
dvy = ke™ Vidt + 0y e V,dW, P

By integrating we get

t t
Vv, = voe*'“ﬂ;/ e'*<5*t>ffsds+m/ eV, aw P
0 0
= Voe "+ X; + Z
Where
t A
X = li/ "=V ds
0
And

t
Zy=m / eIV aw P
0
Then we have

Vir = E(Vr)
= E(Voe T + X1+ Z7)

We easily show that

T
Zp = em(th) <Zt +771/ GH(St)ngW§D>
t

And

T
Xp = e"t=T) (Xt + K/ e“(s_t)ffsds>
t

Replacing in (9) we get

T
Vir = Voe T 4 emt=T) (Xt +Z: + H/ e"(s_t)Et(Ve)dS>
t

T
VOe—nT + em(t—T) (Vvt o Voe—nt + l€/ em(s—t)Et(‘A/s)ds>
t
Where we’ve admitted that the process
T
t—m / e =Y, aw P
t

is a true martingale (we can prove this when T is fixed).

12
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We now need to calculate th = Et(VT), (0 <t <T). For that we use the same method as we
are doing now for Ey(Vp). The result is:

Vi = (Ve = Vo )e ™0 1+ Vg

We replace in (10), and after calculation, we get:

KR —C KR —C

Vi — V. 5 Vi — V. .
Vir = (Vt o (Ve %) o V@) e r(T=1t) 4 K(Ve w)efc(Tft) TV (11)

2.3.2 Calculation of the Variance Swap realized variance in Gatheral’s

We insert (11) in (5). And after calculation we derive the following formula for Variance Swap

. Vo — alVi=Veo) _ Ve ST
OV S(t,t+0) :9Voo+( ! n—c¢ )(1—e—“9)+M(1—e‘09)
K c(k —¢)

Now we can easily calculate the quadratic variation of the log of variance swap. We get

2.2z a-e=r0)\?
2(1_e— K02 4 V2 M\~ ¢ V2
<In(VS(,.+0)),In(VS(.,. +0)) >= 1) Jo vegaTapdst T2 (=) Jo vstaver
2 —r0y (A=) (1=e"")\ rt __V.Vi
e (1 - o) (Ume) _ (oe ) [0 o bl ds
We make the approximation that between 0 and ¢, V, ~ VS(s,s + ) and that V, ~ VS(s,s + 6).
That is equivalent to assume an almost flat variance term structure between 0 and t.
We then derive the realized variance on Variance Swap, between 0 and t.
2
1 i —r0)2 mr®  ((A—e?) (1-e")
- <In(VS(.,,.+0)),In(VS(.,. +0)) >= 1—e™" —
p <50+ 0) VS +6) >= g =V e e "
2012 oy (L=e™)  (1—e)
— = (1—-e"" — 12
+02(/£ —¢) (1=e™) ¢ K (12)

As in Balland, the realized variance on Variance Swap strongly depends on mean reversion para-
meters k and c. Thus, catching the correct term structure of Variance Swap variance would provide
us accurate values for x and c.

13
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2.4 Zero-strike Variance Swap variance in Double Heston model

In this section, methods and calculus are exactly the same as those used for above Double log normal
Model.

2.4.1 Calculation of forward variance in Double Heston: V, 7 =E, (V) V0 <t <T

We find the same result as in double log normal:

Ver (m SN VOO) g AV Vo) aryy g

KR —C KR —C

2.4.2 Calculation of the Variance Swap realized variance in Double Heston

We find
. " 2
2(1_e—r0)2 775’12 U%ﬂe)*@ 0
<In(VS(,.+0),In(VS(.,,.+0)) >= ’71(19%2 ) fot Vs(é,‘f;+9)2ds+ ( )2 f(f VS(S‘,’;JFG)stjL
2011 —k 1—e— Y 1—e "9 t V.V,
92’2’2172’)(1 —e ) <( c )¢ " )) Jo V5(s,s70)7 45

We still make the approximation of an almost flat variance term structure between 0 and t. and
we get

2

1 _m R 2/t 1
7 < In(VS(.,.+6)),In(VS(.,,.+6)) >= YN (1—e") ; VS(s,s+0)dS

Lome? ((A=er) (- 2/t S
t0%(k — ¢)? c K o VS(s,s+0)

2pmme ey (o) (e )N ] )
+t02(;@—c)(1 )( p - )/0 VS(s,s+9)d (13)

The term structure of Variance Swap variance is still hardly dependent on the mean reversion
parameters.

To use the previous formula we will need to estimate [ veeaTe 98

14



3 ATMF Skew asymptotic expansion with respect to volatility
of volatility parameters

9 In this part we use the same method as in [4] to derive asymptotic formula for the skew.
First, we start with the dynamics for forward variances fitted to today’s forward variance curve.
These are specified for a discrete set of periods with tenor A,

VtiA = mean variance between T; = tg +iA and T;11 = to + (i + 1) A,

as seen from t (tg <t < Tj).

Second, we use the link between the smile skew and the skewness of the distribution of logarithmic
returns (see [1]) to derive the skew. Skewness and kurtosis are defined in terms of cumulants of a
distribution of a random variable X. Let k; be the cumulants, i.e. the Taylor coefficients of the
generating function. In particular, k; = E(X), k2 = Var(X), and x3 = E(X — £1)3. The skewness is
then defined by

(kg)3/2"

Let us suppose that the normalized logarithmic return of the underlying has a deviation from the
normal density quantified by S, then its logarithmic generating function is

52 53

5—#85.

and the volatility smile is approximated by o(K,T) ~ gq (1 - 7d) where d is defined by

log(F/K) , o0v/T
Uo\/T 2

Thus the ATMF skew

algg 7| p for maturity 7' is worth

St
6vVT
Let try to find an asymptotic expression (when volatility of volatility parameter is small) for the

maturity-7" skew where T'= NA. The corresponding logarithmic return is log % £ ZN 01 r;, where
the returns 7; = log F(;41)a — log F;a. Note that

Skewr =

1
r, X~ ‘/ZA(W(z-i-l)A W ) amAA

The second term in this expression is small relative to the first one. Thus we use the following
approximations: 7?2 = A V;a and r; = \/Via (W(I;J,-l)A - WiIZ). The third moment of log % is

Mg

Il
—
R
o
o’
lle
N———

w
~_

(£)

STt 43 rr 46 > rirm
> )

i#] 1#j#k

The brackets here stand for expectation.

9 This section is due to Alexandre Engoulatov: alexandre.engoulatov@polytechnique.org

15



3.1 ATMF Skew in Balland’s 2 factors

The jA-forward instantaneous variance, V7% := E(Vja/F:), t < jA follows (see equation (7))

avys , :
V;fA — 2,YSD€—)\SD (]A—t)thSD + 2,YLD6—)\LD(jA—t)thLD.
£
In first order with respect to ysp and vrp, we deduce that
iA
Vj ViA
) JA JA
~ Vi* 1+ 2vsp / e AspUA=M WS 2y, / O e e
0 0
And

- JA ) JA .
VVia ~ \/VOJA <1—|—’YsD/ 67ASD(]A7U)dW5D+7LD/ e)‘LD(]Au)quLD>
0 0

In order one with respect to vsp and v p, we get

< Z rirjr;g> =0
i#j#k

<Zm§> - ZA<\/VTAV]-A/(M)A thF>

j>i A

(i+1)A

— (i+1)A _
= ZA ViAvy 2PSD'YSD/ 67ASD(jA7u)dU+ZPLD'YLD/

e Ao (A—u) gy,
J>i A 1A

12

Z 24 V()iAVEJjA (pSD’Yspei)‘SD(jfi)A + pLD»yLDe*ALD(j*i)A)
>t

And finally we write

We thus get

N —

() =82 3 (8
5 ;
in order one in vol of vol, we easily calculate
2

The term Ef\;}l (r?) is of order § in A, and the term <Zi¢j rirj2-> is of order 0. Thus for A — 0,
NA =T, the first term vanishes and we have

e
L

=

Skewr = \% (pSDVSDC(ASD, T) + proveo¢(ALp, T)) (14)

16



where ( is defined by

C(Aa T) =

1m
A—0, NA=T

[V IATIA = A(—i
A? Zj>z’ VitV Te AG-HA
(A3, vy2)™”
Our resulting expression is function of model parameters as well as of today’s forward variance curve:
I VEVge 260 ds dt
= . 3/2 :
(Jo v dr)

In particular, if we suppose a flat term structure of variance, we get

PSDYSD 1 “AspT PLDYLD 1 A nT >
Skewy = PSPISD (1 1 — e PspT)) 4 PLDOLD (4 1 e e
YT NepT < NopT )> AepT < pyal )

CAT)

It’s the same formulall found by Gatheral in [11], in the case of a simple Heston model.

For \XT'— 0,
Skewy ~ pSDQ’YSD T PLDZ'YLD

For AT — o0,
. PsDYsD | PLDYLD

Sk ~
T AspT AepT

It follows that if \XT" > 1, i.e. the maturity is long relative to the typical mean-reversion time,
the skew decays as 1/(AT). This is expected because the spot process decorrelates from the volatility
process on this time scale. When AT ~ 0 (the maturity is short relative to the typical mean-reversion
time), the skew is of order one in ~.

3.2 ATMF Skew in double log normal model

Let us derive the corresponding formulas for the double log-normal model. The forward variance
follows (One can use equation (11) to check that).

thjA _ nl‘/te—n(jA—t) thSD n 772‘7t (e—c(jA—t) _ e—x(jA—t)) thLD

K—c

where V; is the instantaneous variance and V; is its target variance. We then integrate to get

the forward variance in term of instantaneous variance and target variance. We calculate without
particular difficulties:

(i+1)A o N
<\/Vi / thFVjA>= VGAA | pspme "I=DAG(Vy, Vo, Vio, i)

A

(15)

+ pLD"72 (6_C(j_i)A - e_n(j_i)A) G(V07 VOO) VOO» ZA)

K —C

where
K

G(21,292, 200, T) = Zoo + (21 — 200)e™ "7 + (22 — ZOO),i —

is the corresponding forward variance functional.
Letting A — 0 we obtain :

Skewp = % (pSDmCl (T) 4 pron2C2 (T))

' Without corrections on .
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where

LI () a

)
(f Vi dt)

GQ(T) =

and

2 o YV (e - e )
(kw@”

As before, V{ is today’s forward variance curve and V{ is today’s forward target variance curve.

Cz(T) =

For a flat term structure of variance, we have

1 pPSDM  PLDN2 1 T PLDT2K 1 o
Skewr = — PP (g (1 PLDTRR () — (1 —e®
T 2T{< K K—c KJT( ) +c(m—c) CT( )
For AT — 0, Skewr o~ 2RI
For \T — 0, SkewT ~ 1T (PSDm + PZDT(C o 1))

It appears that for very short maturities, the skew depends only on the quantity pspni. Thus
we could use this information to drive the short term skew. Actually one of our big challenges is to
reduce curvature in the short term maturities forward skew given by our double log normal model.

3.3 ATMF Skew in double Heston model

For the Double Heston model, the forward variance follows

AV = 1/ Ve U8 qsD 4 g, /Vtﬁ’i

To derive the corresponding Skew formula, we are confronted with evaluating the expectation of

VV; and the expectation of v/ V;. The Dufresne iterative procedure ([9]) does not work for this case.
However, we can use the formula for the square root (for the proof see for example [15] ):

B ] sV
_Q\f 53/2

Passing the expectation under the integral for the positive function 1 T (Fubini), we get

(efc(jAft) _ efn(jAft)) thLD
&

E(ﬁ) - /OO Mds (16)

$3/2

Now using the fact that V; is affine, we can calculate the Laplace transform of V; density (see [8]).
We get

B (%) = o) expl(9(5) ~ 1),
with

_ 20V _ ns (1—e 2cVy
V=" =1+ ! =2 — M= —5—.
n% ) ¢(S) ( SMt) ) 1243 2 ( ¢ ’ t n%(ect _ ]_)

Performing the calculation of (16) with expansion with respect to 7o small, we get that

B (VP ~ VEr
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Thus, we also approximate E (\/17 ) by VEV.

In a similar way that we did for the double log-normal model, we obtain the following expressions
for the skew, up to the first order in volatility of volatility:

Skewq = % (pSDmCl(T) + prpn2C2 (T))

where
o V(1) dt
(1) = . 3/2
(0 vir ar)
and
" ~ _e—e(T—1) e m(T—1)
2 o VT (e - e e
G(T) = T 3/2
(Jo Vit at)

For a flat term structure of variance, we have

1 pPSDN  PLDN2 1 KT PLDI2K 1 —eT
kewr = - 1——(1—e" PLDIRE (4 2 (1 _ ¢
Skewr QT\/VO{( K n—c)( K (1=e™) +c(/$—c) CT( )

For \T' — 0, Skewp ~ %
For \T — 0, SkeWT ~ 2T\1/VO (Psim + ngza (% o 1))

4 Applications and results

In this section, we will use empirical (historical) data to estimate historical Variance Swap variance.
Then, for each of our three models, we will use expressions of Variance Swap variance established
above to calibrate models parameters.

4.1 Historical - Empirical data
For each maturity (), We need to estimate the quantity

! 1 N VS(ti, ti +0)
- <1 - 1 .- = lim —— 1
- <In(VS(,.+0)),In(VS(,. +0) >= lim Zizl(n(vsm_l,ti_l )

)’

N—>o00

With tg =0 and ty = NAt = t.
Then for each maturity (), we need, for every time step, Zero-Strike Variance Swap with matu-
rity (). Ideally We should have every day prices on a past period of amount ten years. Unfortunately

we are quite a young institution, and we don’t have data on a so long past period. We thus need to
find some trick to estimate historical Variance Swap (VS).

In [11], Jim Gatheral shows that

E(é /Oeafds) _ /m o2 ()N (2)dz (17)

—0o0

Where N is the cumulative function of the normal distribution, and opg is the BS implied volati-
lity for the maturity €, seen as a function of the log moneyness: z := In (%) And F is the underlying
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forward for the maturity 6.
Now if we consider the following BS implied variance parametrization :

0%4(2) = 0f +az + 22

Using (17) we get

1 (?
E(g/0 o2ds) = o} + 3 (18)

In the above parametrization of BS implied variance, « is the variance skew and f is the variance
curve.

We see that the realized variance over a period of time 6 does’nt depend on the skew, but on the
curvature. The intuitive explanation of this is that increasing the skew doesn’t impact the implied
volatility average level, but increasing the curvature increases the convexity of the implied volatility,
and increases the volatility out and in the money (on the wings). And that increases the fair level of
the volatility.

Finally if we suppose a small curvature for the implied variance** (8 ~ 0), we obtain that a good
approximation of realized variance is the at the money forward BS implied variance.

In order to evaluate this approximation, we draw on the next graph the at the money BS implied
variance and the Zero-Strike variance Swap for the same maturity. We used a Monte Carlo Pricer'?.

Zero stiike Variance Swap versus ATM implied variance

14.00%

12.00%

10.00%

B }/‘_,/ —&— ATM implied variance
6.00% vr_’_,.,- Zero-Strk e variance Swap

sariance

4.00%

2.00%

0.00% T T T g T T
1 3 =] 1z 24 36 4 60 84 120 144 180

maturity (in months)

The gap between the two curves above may be the correction term [ in the the equation (18).
In expectation we get 5 ~ 1%.

**This hypothesis is plausible within equities
Tt Double log normal model with 10000 paths, with the set of parameters: {rk = T740.17%; c = 10.48%; n1 = 272%; 12 =
33.2%; ps = —87.59%; pr, = —50.62%; psr, = 2.73%; Vo = 5.78%; Vo = 5.20%; Voo = 18.76%}
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For Calibration we used Totem*™ monthly data on ATM implied variance, since 1998, to approxi-
mate Variance Swap of maturity §. We got the following term structure of historical Variance Swap
variance.

—— stas0

| |-= nikkei
ftse

—— s&p

annualized quadratic variation of logarithm of
Variance Swap

1 3 6 12 24 36 48 60 B4 120 144 180
theta = T-t (in months)

HTotem is an institution that gives market consensus from prices provided by different Banks
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4.2 Calibration of mean reversion parameters on the term structure of
implied variance

The calibration then consists in minimizing the quadratic gap between the structure on the previous
figure and the analytic formula of Variance Swap variance calculated in the section above. We used a
dichotomic algorithm called ”Powell algorithm”.

One may notice that this method doesn’t allow us to fit the whole models parameters. In fact
the analytic formula doesn’t include the both correlations between the underlying and the volatility
brownians. We should find some way to estimate those correlations (by calibrating the asymptotic
skew formula for example).

4.2.1 Results of calibration in Balland’s 2 Factors model

In Balland’s 2 factors, we use equation (8). As we can see, Agp and App are symmetric in this
formula. And also vgp is symmetric to vp. To obtain good calibration, we need to initialize Agp
the far as possible from App. If not we may find same values for Agp and Ay p, also for vsp and v,p.
That is not consistent with the model. In particular we won’t have time scale separation.

We tried some tricks to separate parameters.

e One idea was to initialize mean reversion parameters one far from other as possible, then while
calibrating, we floor Agp and we cap Arp. Results are given here

y | Euro STOXX 50 | NIKKEI 225 | S&P 500 | FTSE 100 |

p 94.81% 70.24% 13.78% 81.93%

SD 68.09% 66.52% 62.75% 62.51%

AsD 537.48% 418.02% 481.57% | 326.48%

LD 29.81% 19.36% 22.66% 27.54%

ALD 12.98% 4.41% 11.24% 12.47%

- (in years) 7.70609 22.6997 8.89291 | 8.01821
L (in months) 2.23264 2.87068 249184 | 3.67557
Zab 41.4186 94.8892 42.8257 | 26.1778

leo 0.0862602 0.105862 | 0.0817623 | 0.119701

Tip 0.68493 0.850568 0.456486 | 0.607962

We get good results for mean reversion parameters, but correlation between short and long term
is globally to high.

e The other idea is that since we want A, p be small, we write a Taylor expansion on (8), with
respect to the variable App, around zero. We get

% <I(VS(,. +0),n(VS(,. +0)) >~

1 <47§D

62 \ \%,

92

1 /8 0
( PYSDYLD (l—e_ASDa)(

AsD

1 2
(1= €520 4 492 L0%(1 = ZAsp0) > i

- Do) o

By doing that, we break the symmetry between the mean reversion parameters and we fit (19).
This expansion makes the calibration easier, but we still have huge correlation.
What we do at end is to fix

And

AspAsp = A

YspYLD =7
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At the level of the previous calibration. We replace in (8) and we get

% <W(VS(,.+0), In(VS(,. +0)) >=

We finally fit (20) with only three parameters, rather than five, and we get results in table

92

YLD

(Erctopa - oy GLpa -

EOVERR

below
y | Euro STOXX 50 [ NIKKEI 225 | S&P 500 [ FTSE 100 |
p 48.29% 38.10% 21.45% 25.07%
YsD 58.80% 58.71% 59.29% 58.53%
Asp 579.39% 420.17% 489.08% | 323.89%
YLD 25.07% 17.82% 19.88% 23.60%
AL 7.33% 2.46% 6.97% 7.70%
v (in years) 13.64671653 40.70186292 | 14.3414 12.9828
.5 (in months) 2.07112949 2.856014052 | 2.45359 3.70495
352 79.06825678 171.0153894 | 70.1407 42.05
}%—g 0.059669932 0.082027665 | 0.0718658 | 0.10576
}%g 0.857463351 1.293034209 | 0.566688 | 0.722834

Results are satisfactory. Mean reversion parameters are consistent with time scale. To see how
good is the fit, in appendix A, we represent on the same graph historical curve and model curve for
each of our four indexes. We observe that Balland 2 factors (as the others 2 factors models studied in

this report) fit very well the historical term structure of Variance variance.

4.2.2 Results of calibration in Double log normal

We use here the equation (12). There is no particular difficulty and we get the following results

e—)\LDG)2> _|_

T (M0~ e 5im) (20)

| Euro STOXX 50 | NIKKEI 225 [ S&P 500 | FTSE 100 |

P) 86.48% 29.98% 55.37% 24.83%
K 740.17% 470.92% 416.93% 296.75%
m 152.711% 133.35% 135.10% 137.20%
c 10.48% 11.61% 3.13% 14.08%
N2 52.82% 44.96% 36.40% 56.90%

% (in months) 1.621249172 2.548230572 | 2.878194796 | 4.043835173

1 (in years)

9.541347429

8.609778987

31.97482941

7.103836782

0t

0.3150509

0.377593035

0.437799592

0.634356046

b IS

2.662071152

1.740598882

4.235908524

2.300284848

Results are good enough.
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4.2.3 Results of calibration in Heston 2 Factors

We use equation (13), and we numerically estimate the quantity fot mds as:

t 1 N 1
 dse A
/0 VS(s,5+6)" ;vsm,tﬁa)

Results of calibration are the follows:

| Euro STOXX 50 | NIKKEI 225 | S&P 500 | FTSE 100 |

P 95.94% 98.14% 93.56% 96.39%
r 1169.89% 507.18% 429.38% | 542.22%
m 24.30% 16.12% 24.25% 17.09%
c 9.56% 4.83% 1.91% 9.64%
2 12.11% 8.10% 7.57% 10.69%
T (in years) 10.4602 20.7 52.2234 10.3759
T (in months) 1.02574 2.36602 2.79475 2.21312
E 122.372 104.986 224.235 56.2601
H 0.005049 0.00512105 | 0.0136948 | 0.00538753
n 0.153314 0.135806 0.299649 | 0.118622
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Conclusion

In this report, we worked on 3 particular 2 factors stochastic volatility models: Balland’s model,
Gatheral’s model (double Log Normal) and double Heston model. We provided formula for forward
Variance Swap variance. We also provided an asymptotic expansion of the ATMF skew, with respect
to the volatility of volatility parameters around zero.

We estimated empirical Variance Swap by the ATMF implied variance for the same maturity. We
used totem data to calculate term structure of historical Variance Swap variance. Then we used closed
form formula on Variance Swap variance to fit the historical term structure of implied variance. That
allowed us to calibrate some parameters of the models. We got satisfactory results, especially for the
mean reversion parameters.

In the future, the next step of our work could be to use asymptotic skew formula calculated here to

fit the product of the volatility of volatility parameter with the corresponding Underlying-correlation
parameter. We could also calculate asymptotic formula for vanilla prices, as it’s done in [10].
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A Historical Variance Swap variance versus Models Variance

Swap variance

A.1 Balland 2 Factors
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A.2 Double Log Normal
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Term structure of historical Variance Swap Variance (ftse
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A.3 Double Heston

Tem structure of historical Variance Swap Variance {stoxx30)
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B ATMEF asymptotic skew versus Monte Carlo skew in Dou-
ble Log Normal Model

Skew ATMF (Double Lognormal Market Parameters with a flat variance term
structure)
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