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Abstract

In this report, we provide formula for the zero-strike Variance Swap variance. We also provide asymp-
totic formula for the ATMF skew, in a context of three particular 2 factors Stochastic Volatility
Models. As application, we use these formula to calibrate the mean reversion parameters on the term
structure of Variance Swap variance.

Most products, especially those for which a static replication is possible, are priced using volatily
(local or stochastic) calibrated on market vanilla options (Puts and Calls). However, some exotic
products like Napoleon are very sensitive to some first or second order features (forward skew or/and
volatility of volatility) others than the vanilla prices. For pricing Napoleon for instance, Bergomi
illustrates in [4] that we need to be well calibrated on the volatility of volatility.

What we do in this report is to express, analytically, variance of Variance Swap as a function of
our models parameters. Then, we use these formula to fit term structure of historical variance of
implied variance∗.

The fit is done through Powell algorithm combined with conjugated gradient. Calibration is very
fast (less than 3 minutes for a fit), but we need to find the accurate initial point that make the al-
gorithm converge. We obtain good results enough, and parameters we get are consistent with their
intuitive meanings.

∗Implied Variance being the square of the implied volatility.
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disponibilité ainsi que la patience dont ils ont fait preuve en mon égard.
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gentiment accueilli au sein de l’équipe, facilitant ainsi mon intégration.
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Introduction

In order to replicate some exotic products such as Cliquet or Napoleon, we need to fit the term
structure of volatility of volatility, and the forward smile. There is no liquidity on these products.
However, we know that the inverse of mean reversion parameter is homogeneous to the time scale,
and moreover, volatility of volatility strongly depends on mean reversion parameters. Thus we can
fit the mean reversion parameters on the term structure of historical volatility volatility. But since
volatility is not a tradable product, we will fit historical Variance Swap variance.

In the first section we present the three 2 factors stochastic volatility models on which we work:
we write the models dynamics and we comment specifications of each model.

In section 2, for each of our three models, we express Variance Swap Variance as a function of model
parameters.

In section 3 we provide asymptotic formula for the ATMF Skew.

Section 4 deals with the computational results.
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1 Models Presentation

For the sake of simplification, we suppose a zero interest rate. Or if one supposes that the underlying
is the forward, then we will have no drift term in the diffusion equation, under the risk neutral
Probability†.

1.1 2 Factors Balland’s Model

1.1.1 Model dynamic

In this Model, the underlying diffuses as follow:

dFt
Ft

=
√
VtdW

F
t√

Vt =
√
V0e

(ZSDt +ZLDt − 1
2var(Z

SD
t +ZLDt ))

With

ZSDt = γSD

∫ t

0

eλSD(s−t)dWSD
s

ZLDt = γLD

∫ t

0

eλLD(s−t)dWLD
s

And

d < WF ,WSD >t = ρSDdt

d < WF ,WLD >t = ρLDdt

d < WSD,WLD >t = ρdt

• 1
λLD

characterizes the long period duration and 1
λSD

the short period duration.

• ZSD and ZLD are Ornstein Uhlenbeck processes with mean reversion λ and 0 as long term
variance. In fact, we have

dZit = −λiZitdt+ γidW
i
t

i ∈ {SD,LD}

• There should be some relations between the parameters:

γ2
SD

λSD
= O(1) (1)

λSD >> 1 (2)

and
λSD
λLD

>> 1 (3)

• Relation (1) ensures an equilibrium between term in dt and term in dWt within the diffusion
equation.

• Equations (2) and (3) are due to time scales. When (3) is satisfied, then there is separation
between short and long term. This implies:

– ρ ' 0;

– We can fit the long term and short term data separately;

†The forward is a martingale under the risk neutral probability
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1.1.2 Balland To SABR

In term of SDE‡, we can rewrite the diffusion as follow:

dFt
Ft

=
√
V tdW

F
t

dVt
Vt

= {2γ2
SD + 2γ2

LD + 4ργSDγLD − γ2
SDe

−2λSDt − γ2
LDe

−2λLDt −

2ργSDγLDe
−(λSD+λLD)t − 2λSDZ

SD
t − 2λLDZ

LD
t }dt+ 2γSDdW

SD
t + 2γLDdW

LD
t (4)

dZSDt = −λSDZSDt dt+ γSDdW
SD
t

dZLDt = −λLDZLDt dt+ γLDdW
LD
t

With

d < WF ,WSD >t = ρSDdt

d < WF ,WLD >t = ρLDdt

d < WSD,WLD >t = ρdt

In particular for Balland 1 factor (when λLD = 0 and γLD = 0), for λSD = 0, equation (4) gives:

dVt
Vt

= γ2dt+ 2γdWSD
t

That is equivalent to

d
√
Vt√
Vt

= γdWSD
t

As a consequence, SABR model (with β = 1 ) can be seen as a particular case of 1 factor Balland
model. Since we already know how to handle SABR model, we can use this to have a first guess on
some Balland’s parameters. Or we can compare some Balland’s parameters to those of SABR with
β = 1, in order to see how good is our Balland’s calibration.

1.2 Double Lognormal model (2 Factors Gatheral’s Model)

The underlying’s dynamic in this model is given by:

dFt
Ft

=
√
VtdW

F
t

dVt = κ(V̂t − Vt)dt+ η1VtdW
SD
t

dV̂t = c(V̂∞ − V̂t)dt+ η2V̂tdW
LD
t

with

d < WF ,WSD >t = ρSDdt

d < WF ,WLD >t = ρLDdt

d < WSD,WLD >t = ρdt

The mean reversion parameters here are κ end c. They have the same meaning as λSD and λLD
in Balland’s model respectively. η1 and η2 also have the same meaning as γSD and γLD respectively.

Variance here is a mean reversion process that reverts toward a process, that itself reverts toward
a long term level (V̂∞).

For times around 0, the variance reverts toward V̂0. Then V̂0 can be seen as the short term mean level
of the variance. Finally, V0, V̂0 and V̂∞ morally impose an intuitive term structure of the variance.

‡Stochastic Differential Equation
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Gatheral’s model differs from Balland in many ways:

• In Balland, Variance is lognormal while in Gatheral it’s not. That may make calculus easier in
Balland.

• in Gatheral,Variance may be less sensitive to the long term parameters than in Balland

1.3 Double Heston model

In double Heston Model, the underlying dynamic is:

dFt
Ft

=
√
VtdW

F
t

dVt = κ(V̂t − Vt)dt+ η1

√
VtdW

SD
t

dV̂t = c(V̂∞ − V̂t)dt+ η2

√
V̂tdW

LD
t

with

d < WF ,WSD >t = ρSDdt

d < WF ,WLD >t = ρLDdt

d < WSD,WLD >t = ρdt

The variance here diffuses as a CIR§ model for the interest rate. And it reverts toward a process
that follows, itself, a CIR process and reverts toward a long duration level.

Both Gatheral and Double Heston models are particular cases of a global class of models called
double CEV, which can be written as follow:

dFt
Ft

=
√
VtdW

F
t

dVt = κ(V̂t − Vt)dt+ η1V
α
t dW

SD
t

dV̂t = c(V̂∞ − V̂t)dt+ η2V̂
β
t dW

LD
t

with

d < WF ,WSD >t = ρSDdt

d < WF ,WLD >t = ρLDdt

d < WSD,WLD >t = ρdt

And

α, β ∈ [
1

2
; 1].

For the same set of parameters:

{κ = λSD = 740.17%; c = λLD = 10.48%; η1 = γSD = 272%; η2 = γLD = 33.2%; ρS = −87.59%;
ρL = −50.62%; ρSL = 2.73%;V0 = 5.78%; V̂0 = 5.20%;V∞ = 6%}

We draw on the next figure the implied volatility on a 2 years maturity out of the money vanilla
options, for each of our three models.

§Cox-Ingersoll-Ross
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We observe that Balland 2 Factors seems to be the most expensive for (I = K
S ) under 100% and

the Cheapest for I over 100%.
Double Heston prices stay between Balland and Gatheral.
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2 Calculation of zero-Strike rolling Variance Swap’s variance

In this section, for each of our three models, we will calculate the variance of a zero-strike variance
swap.

2.1 Preliminaries

Let us recall the following well-known definitions and results.

• Given an underlying that diffuses as

dSt
St

= µtdt+ σtdWt

The realized variance on the underlying S between 0 and t is given by

1

t

∫ t

0

σ2
sds

Writing Itô’s lemma on the logarithm of S, we get

d lnSt =
dSt
St
− 1

2
σ2
t dt

Thus, the martingale part of lnS is
∫
σsdWs. And the quadratic variation of lnS is

< lnS, lnS >t=

∫ t

0

σ2
sds

• The zero-strike forward Variance Swap starting at time t, with Maturity θ is given by

V S(t, t+ θ) = Et(
1

θ

∫ t+θ

t

σ2
sds)

=
1

θ

∫ t+θ

t

Et(σ
2
s)ds

=
1

θ

∫ t+θ

t

Vt,sds (5)

where

Et(.) = E(./Ft)

And

Vt,s = Et(σ
2
s) ; 0 ≤ t ≤ s

By differentiating the equation (5), we get:

dV S(t, t+ θ) =
1

θ

{
(Vt,t+θ − Vt,t)dt+

∫ t+θ

t

dVt,sds

}
(6)
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2.2 Zero-strike Variance Swap variance in 2 Factors Balland’s model

2.2.1 Calculation of forward variance in Balland’s: Vt,T = Et(VT ) ∀ 0 ≤ t ≤ T

We remind that
VT = V0e

{2(ZSDT +ZLDT )−var(ZSDT +ZLDT )}

For i ∈ {SD ; LD}, we write

ZiT = eλi(t−T )Zit +Xi
t,T

Where

Xi
t,T = γi

∫ T

t

eλi(s−T )dW i
s

Using the fact that (XSD
t,T , X

LD
t,T ) is gaussian, we get

Vt,T = V0e
{2[eλSD(t−T )ZSDt +eλLD(t−T )ZLDt ]+2V ar(XSDt,T +XLDt,T )−V ar(ZSDT +ZLDT )}

We write Itô on Vt,T . We get (T is fixed)

dVt,T
Vt,T

=
∂

∂t

(
ln {Vt,T

V0
}
)
dt+ 2eλSD(t−T )dZSDt + 2eλLD(t−T )dZLDt + 2e2λSD(t−T )d < ZSD, ZSD >t +

2e2λLD(t−T )d < ZLD, ZLD >t +4e(λSD+λLD)(t−T )d < ZSD, ZLD >t

And since

V ar(ZSDt + ZLDt ) =
γ2
SD

2λSD
(1− e−2λSDt) +

γ2
LD

2λLD
(1− e−2λLDt) + 2

ργSDγLD
λSD + λLD

(
1− e−(λSD+λLD)t

)
And

V ar(XSD
t,T +XLD

t,T ) =
γ2
SD

2λSD
(1−e−2λSD(T−t))+

γ2
LD

2λLD
(1−e−2λLD(T−t))+2

ργSDγLD
λSD + λLD

(
1− e−(λSD+λLD)(T−t)

)
We finally derive the following expression:

dVt,T
Vt,T

= 2γSDe
−λSD(T−t)dWSD

t + 2γLDe
−λLD(T−t)dWLD

t (7)

We find that forward variance is a local martingale under the risk neutral probability.
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2.2.2 Calculation of the Variance Swap’s realized variance in Balland’s

We substitute (7) in (6). We obtain

dV S(t, t+θ) =
1

θ

{
(Vt,t+θ − Vt,t)dt+

(∫ t+θ

t

2γSDVt,se
λSD(s−t)ds

)
dWSD

t +

(∫ t+θ

t

2γLDVt,se
λLD(s−t)ds

)
dWLD

t

}

We then make the approximation that between t and t+ θ we have Vt,s ≈ V S(t, t+ θ). It means
that we assume a flat variance term structure between t and t + θ. Which may be realistic if the
maturity θ is short.
The approximation leads to

dV S(t, t+ θ)

V S(t, t+ θ)
=

1

θV S(t, t+ θ)
(Vt,t+θ−Vt,t)dt+

1

θ

(
2γSD
λSD

(1− e−λSDθ
)
dWSD

t +
1

θ

(
2γLD
λLD

(1− e−λLDθ)
)
dWLD

t

We can thus easily calculate the quadratic variation of ln(V S(t, t+ θ)) (with θ fixed). The result
is

< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t=

t

θ2

(
4γ2
SD

λ2
SD

(1− e−λSDθ)2
+

4γ2
LD

λ2
LD

(1− e−λLDθ)2
+

8ργSDγLD
λSDλLD

(1− e−λSDθ)(1− e−λLDθ)
)

The realized variance, between 0 and t, on the rolling (constant maturity θ) Variance Swap is then

1

t
< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t =

1

θ2

(
4γ2
SD

λ2
SD

(1− e−λSDθ)2
+

4γ2
LD

λ2
LD

(1− e−λLDθ)2
+

8ργSDγLD
λSDλLD

(1− e−λSDθ)(1− e−λLDθ)
)

(8)

We observe that realized variance on Variance Swap strongly depends on mean reversion param-
eters λSD and λLD. So, catching the term structure of variance may be equivalent to obtain good
enough values for λSD and λLD
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2.3 Zero-strike Variance Swap variance in 2 Factors Gatheral’s model
(Double Log normal)

2.3.1 Calculation of forward variance in Gatheral’s: Vt,T = Et(VT ) ∀ 0 ≤ t ≤ T

We have
dVt = κ(V̂t − Vt)dt+ η1VtdW

SD
t

Let vt = eκtVt. We have
dvt = κeκtV̂tdt+ η1e

κtVtdW
SD
t

By integrating we get

Vt = V0e
−κt + κ

∫ t

0

eκ(s−t)V̂sds+ η1

∫ t

0

eκ(s−t)VsdW
SD
s

= V0e
−κt +Xt + Zt

Where

Xt = κ

∫ t

0

eκ(s−t)V̂sds

And

Zt = η1

∫ t

0

eκ(s−t)VsdW
SD
s

Then we have

Vt,T = Et(VT )

= Et(V0e
−κT +XT + ZT ) (9)

We easily show that

ZT = eκ(t−T )

(
Zt + η1

∫ T

t

eκ(s−t)VsdW
SD
s

)
And

XT = eκ(t−T )

(
Xt + κ

∫ T

t

eκ(s−t)V̂sds

)
Replacing in (9) we get

Vt,T = V0e
−κT + eκ(t−T )

(
Xt + Zt + κ

∫ T

t

eκ(s−t)Et(V̂s)ds

)

= V0e
−κT + eκ(t−T )

(
Vt − V0e

−κt + κ

∫ T

t

eκ(s−t)Et(V̂s)ds

)
(10)

Where we’ve admitted that the process

t� η1

∫ T

t

eκ(s−t)VsdW
SD
s

is a true martingale (we can prove this when T is fixed).
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We now need to calculate V̂t,T = Et(V̂T ), (0 ≤ t ≤ T ). For that we use the same method as we
are doing now for Et(VT ). The result is:

V̂t,T = (V̂t − V̂∞)e−c(T−t) + V̂∞

We replace in (10), and after calculation, we get:

Vt,T =

(
Vt −

κ(V̂t − V̂∞)

κ− c
− V̂∞

)
e−κ(T−t) +

κ(V̂t − V̂∞)

κ− c
e−c(T−t) + V̂∞ (11)

2.3.2 Calculation of the Variance Swap realized variance in Gatheral’s

We insert (11) in (5). And after calculation we derive the following formula for Variance Swap

θV S(t, t+ θ) = θV̂∞ +
(Vt − κ(V̂t−V̂∞)

κ−c − V̂∞)

κ
(1− e−κθ) +

κ(V̂t − V̂∞)

c(κ− c)
(1− e−cθ)

Now we can easily calculate the quadratic variation of the log of variance swap. We get

< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t=
η21(1−e−κθ)2

θ2κ2

∫ t
0

V 2
s

V S(s,s+θ)2 ds+
η22κ

2

(
(1−e−cθ)

c − (1−e−κθ)
κ

)2

θ2(κ−c)2
∫ t

0
V̂ 2
s

V S(s,s+θ)2 ds+

2ρη1η2
θ2(κ−c) (1− e−κθ)

(
(1−e−cθ)

c − (1−e−κθ)
κ

) ∫ t
0

VsV̂s
V S(s,s+θ)2 ds

We make the approximation that between 0 and t, Vs ≈ V S(s, s + θ) and that V̂s ≈ V S(s, s + θ).
That is equivalent to assume an almost flat variance term structure between 0 and t.

We then derive the realized variance on Variance Swap, between 0 and t.

1

t
< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t=

η2
1

θ2κ2
(1− e−κθ)2 +

η2
2κ

2

θ2(κ− c)2

(
(1− e−cθ)

c
− (1− e−κθ)

κ

)2

+
2ρη1η2

θ2(κ− c)
(1− e−κθ)

(
(1− e−cθ)

c
− (1− e−κθ)

κ

)
(12)

As in Balland, the realized variance on Variance Swap strongly depends on mean reversion para-
meters κ and c. Thus, catching the correct term structure of Variance Swap variance would provide
us accurate values for κ and c.
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2.4 Zero-strike Variance Swap variance in Double Heston model

In this section, methods and calculus are exactly the same as those used for above Double log normal
Model.

2.4.1 Calculation of forward variance in Double Heston: Vt,T = Et(VT ) ∀ 0 ≤ t ≤ T

We find the same result as in double log normal:

Vt,T =

(
Vt −

κ(V̂t − V̂∞)

κ− c
− V̂∞

)
e−κ(T−t) +

κ(V̂t − V̂∞)

κ− c
e−c(T−t) + V̂∞

2.4.2 Calculation of the Variance Swap realized variance in Double Heston

We find

< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t=
η21(1−e−κθ)2

θ2κ2

∫ t
0

Vs
V S(s,s+θ)2 ds+

η22κ
2

(
(1−e−cθ)

c − (1−e−κθ)
κ

)2

θ2(κ−c)2
∫ t

0
V̂s

V S(s,s+θ)2 ds+

2ρη1η2
θ2(κ−c) (1− e−κθ)

(
(1−e−cθ)

c − (1−e−κθ)
κ

) ∫ t
0

√
VsV̂s

V S(s,s+θ)2 ds

We still make the approximation of an almost flat variance term structure between 0 and t. and
we get

1

t
< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t=

η2
1

tθ2κ2

(
1− e−κθ

)2 ∫ t

0

1

V S(s, s+ θ)
ds

+
η2

2κ
2

tθ2(κ− c)2

(
(1− e−cθ)

c
− (1− e−κθ)

κ

)2 ∫ t

0

1

V S(s, s+ θ)
ds

+
2ρη1η2

tθ2(κ− c)
(1− e−κθ)

(
(1− e−cθ)

c
− (1− e−κθ)

κ

)∫ t

0

1

V S(s, s+ θ)
ds (13)

The term structure of Variance Swap variance is still hardly dependent on the mean reversion
parameters.

To use the previous formula we will need to estimate
∫ t

0
1

V S(s,s+θ)ds
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3 ATMF Skew asymptotic expansion with respect to volatility
of volatility parameters

¶ In this part we use the same method as in [4] to derive asymptotic formula for the skew.
First, we start with the dynamics for forward variances fitted to today’s forward variance curve.

These are specified for a discrete set of periods with tenor ∆,

V i∆t = mean variance between Ti = t0 + i∆ and Ti+1 = t0 + (i+ 1)∆,

as seen from t (t0 ≤ t ≤ Ti).
Second, we use the link between the smile skew and the skewness of the distribution of logarithmic

returns (see [1]) to derive the skew. Skewness and kurtosis are defined in terms of cumulants of a
distribution of a random variable X. Let κi be the cumulants, i.e. the Taylor coefficients of the
generating function. In particular, κ1 = E(X), κ2 = V ar(X), and κ3 = E(X − κ1)3. The skewness is
then defined by

S =
κ3

(κ2)3/2
.

Let us suppose that the normalized logarithmic return of the underlying has a deviation from the
normal density quantified by S, then its logarithmic generating function is

s2

2!
+ S s

3

3!
.

and the volatility smile is approximated by σ(K,T ) ' σ0

(
1− S3!d

)
where d is defined by

log(F/K)

σ0

√
T

+
σ0

√
T

2
.

Thus the ATMF skew ∂σ
∂ logK

∣∣∣
F

for maturity T is worth

SkewT =
ST

6
√
T
.

Let try to find an asymptotic expression (when volatility of volatility parameter is small) for the

maturity-T skew where T = N∆. The corresponding logarithmic return is log FT
F0

=
∑N−1
i=0 ri, where

the returns ri = logF(i+1)∆ − logFi∆. Note that

ri '
√
Vi∆(WF

(i+1)∆ −W
F
i∆)− 1

2
Vi∆∆.

The second term in this expression is small relative to the first one. Thus we use the following
approximations: r2

i = ∆ Vi∆ and ri =
√
Vi∆ (WF

(i+1)∆ −W
F
i∆). The third moment of log FT

F0
is

MT
3 =

〈(
log

FT
F0

)3
〉

=

〈(
N−1∑
i=0

ri

)3〉

=

〈
N−1∑
i=0

r3
i + 3

∑
i 6=j

rir
2
j + 6

∑
i6=j 6=k

rirjrk

〉

The brackets here stand for expectation.

¶This section is due to Alexandre Engoulatov: alexandre.engoulatov@polytechnique.org
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3.1 ATMF Skew in Balland’s 2 factors

The j∆-forward instantaneous variance, V j∆t := E(Vj∆/Ft), t ≤ j∆ follows (see equation (7))

dV j∆t

V j∆t
= 2γSDe

−λSD(j∆−t)dWSD
t + 2γLDe

−λLD(j∆−t)dWLD
t .

In first order with respect to γSD and γLD, we deduce that

Vj∆ = V j∆j∆

' V j∆0

(
1 + 2γSD

∫ j∆

0

e−λSD(j∆−u)dWSD
u + 2γLD

∫ j∆

0

e−λLD(j∆−u)dWLD
u

)
And√

Vj∆ '
√
V j∆0

(
1 + γSD

∫ j∆

0

e−λSD(j∆−u)dWSD
u + γLD

∫ j∆

0

e−λLD(j∆−u)dWLD
u

)
In order one with respect to γSD and γLD, we get〈 ∑

i 6=j 6=k

rirjrk

〉
= 0

And〈∑
i 6=j

rir
2
j

〉
=

∑
j>i

∆

〈√
Vi∆Vj∆

∫ (i+1)∆

i∆

dWF
t

〉

=
∑
j>i

∆
√
V i∆0 V j∆0

(
2ρSDγSD

∫ (i+1)∆

i∆

e−λSD(j∆−u)du+ 2ρLDγLD

∫ (i+1)∆

i∆

e−λLD(j∆−u)du

)

'
∑
j>i

2∆2
√
V i∆0 V j∆0

(
ρSDγSDe

−λSD(j−i)∆ + ρLDγLDe
−λLD(j−i)∆

)
And finally we write

S∆ =

〈
r3
i

〉
(〈r2

i 〉)
3
2

=

〈
r3
i

〉(
∆ V i∆0

) 3
2

We thus get

N−1∑
i=0

〈
r3
i

〉
= S∆

N−1∑
i=0

(
∆ V i∆0

) 3
2

in order one in vol of vol, we easily calculate

MT
2 =

〈(∑
i

ri

)2〉
= ∆

∑
i

V i∆0

The term
∑N−1
i=0

〈
r3
i

〉
is of order 1

2 in ∆, and the term
〈∑

i 6=j rir
2
j

〉
is of order 0. Thus for ∆→ 0,

N∆ = T , the first term vanishes and we have

SkewT =
1√
T

(
ρSDγSDζ(λSD, T ) + ρLDγLDζ(λLD, T )

)
(14)
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where ζ is defined by

ζ(λ, T ) = lim
∆→0, N∆=T

[
∆2
∑
j>i

√
V i∆0 V j∆0 e−λ(j−i)∆(

∆
∑
i V

i∆
0

)3/2
]
.

Our resulting expression is function of model parameters as well as of today’s forward variance curve:

ζ(λ, T ) =

∫ T
0

∫ T
t

√
V t0 V

s
0 e
−λ(s−t) ds dt(∫ T

0
V t0 dt

)3/2
.

In particular, if we suppose a flat term structure of variance, we get

SkewT =
ρSDγSD
λSDT

(
1− 1

λSDT
(1− e−λSDT )

)
+
ρLDγLD
λLDT

(
1− 1

λLDT
(1− e−λLDT )

)
It’s the same formula‖ found by Gatheral in [11], in the case of a simple Heston model.

For λT → 0,

SkewT '
ρSDγSD

2
+
ρLDγLD

2

For λT →∞,

SkewT '
ρSDγSD
λSDT

+
ρLDγLD
λLDT

It follows that if λT � 1, i.e. the maturity is long relative to the typical mean-reversion time,
the skew decays as 1/(λT ). This is expected because the spot process decorrelates from the volatility
process on this time scale. When λT ∼ 0 (the maturity is short relative to the typical mean-reversion
time), the skew is of order one in γ.

3.2 ATMF Skew in double log normal model

Let us derive the corresponding formulas for the double log-normal model. The forward variance
follows (One can use equation (11) to check that).

dV j∆t = η1Vte
−κ(j∆−t) dWSD

t + η2V̂t
κ

κ− c

(
e−c(j∆−t) − e−κ(j∆−t)

)
dWLD

t

where Vt is the instantaneous variance and V̂t is its target variance. We then integrate to get
the forward variance in term of instantaneous variance and target variance. We calculate without
particular difficulties:〈√

Vi∆

∫ (i+1)∆

i∆

dWF
t Vj∆

〉
=
√
V i∆0 ∆

[
ρSDη1e

−κ(j−i)∆G(V0, V̂0, V̂∞, i∆)

+ ρLDη2

(
e−c(j−i)∆ − e−κ(j−i)∆

) κ

κ− c
G(V0, V̂∞, V̂∞, i∆)

] (15)

where
G(z1, z2, z∞, τ) = z∞ + (z1 − z∞)e−κτ + (z2 − z∞)

κ

κ− c
(
e−cτ − e−κτ

)
is the corresponding forward variance functional.

Letting ∆→ 0 we obtain :

SkewT =
1

2
√
T

(
ρSDη1ζ1(T ) + ρLDη2ζ2(T )

)
‖Without corrections on λ.
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where

ζ1(T ) =
1
κ

∫ T
0

(V t0 )3/2
(
1− e−κ(T−t)) dt(∫ T

0
V t0 dt

)3/2

and

ζ2(T ) =

κ
κ−c

∫ T
0

√
V t0 V̂

t
0

(
1−e−c(T−t)

c − 1−e−κ(T−t)
κ

)
dt(∫ T

0
V t0 dt

)3/2

As before, V t0 is today’s forward variance curve and V̂ t0 is today’s forward target variance curve.

For a flat term structure of variance, we have

SkewT =
1

2T

{(
ρSDη1

κ
− ρLDη2

κ− c

)(
1− 1

κT
(1− e−κT )

)
+
ρLDη2κ

c(κ− c)

(
1− 1

cT
(1− e−cT )

)}
For λT → 0, SkewT ' ρSDη1

4

For λT →∞, SkewT ' 1
2T

(
ρSDη1
κ + ρLDη2

κ−c (κc − 1)
)

It appears that for very short maturities, the skew depends only on the quantity ρSDη1. Thus
we could use this information to drive the short term skew. Actually one of our big challenges is to
reduce curvature in the short term maturities forward skew given by our double log normal model.

3.3 ATMF Skew in double Heston model

For the Double Heston model, the forward variance follows

dV j∆t = η1

√
Vte
−κ(j∆−t) dWSD

t + η2

√
V̂t

κ

κ− c

(
e−c(j∆−t) − e−κ(j∆−t)

)
dWLD

t

To derive the corresponding Skew formula, we are confronted with evaluating the expectation of√
Vt and the expectation of

√
V̂t. The Dufresne iterative procedure ([9]) does not work for this case.

However, we can use the formula for the square root (for the proof see for example [15] ):

√
V̂ =

1

2
√
π

∫ ∞
0

1− e−sV̂

s3/2
ds

Passing the expectation under the integral for the positive function 1−e−sV̂
s3/2

(Fubini), we get

E
(√

V̂
)

=

∫ ∞
0

1− E
(
e−sV̂

)
s3/2

ds (16)

Now using the fact that V̂t is affine, we can calculate the Laplace transform of V̂t density (see [8]).
We get

E
(
e−sV̂t

)
= φ(s)V̄ exp[λt(φ(s)− 1)],

with

V̄ =
2cV̂∞
η2

2

, φ(s) := (1 + sµt)
−1, µt =

η2
2

2

(
1− e−ct

c

)
, λt =

2cV̂0

η2
2(ect − 1)

.

Performing the calculation of (16) with expansion with respect to η2 small, we get that

E
(√

V̂
)
'
√
EV̂
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Thus, we also approximate E
(√

V
)

by
√
EV .

In a similar way that we did for the double log-normal model, we obtain the following expressions
for the skew, up to the first order in volatility of volatility:

SkewT =
1

2
√
T

(
ρSDη1ζ1(T ) + ρLDη2ζ2(T )

)
where

ζ1(T ) =
1
κ

∫ T
0
V t0
(
1− e−κ(T−t)) dt(∫ T

0
V t0 dt

)3/2

and

ζ2(T ) =

κ
κ−c

∫ T
0

√
V t0 V̂

t
0

(
1−e−c(T−t)

c − 1−e−κ(T−t)
κ

)
dt(∫ T

0
V t0 dt

)3/2

For a flat term structure of variance, we have

SkewT =
1

2T
√
V0

{(
ρSDη1

κ
− ρLDη2

κ− c

)(
1− 1

κT
(1− e−κT )

)
+
ρLDη2κ

c(κ− c)

(
1− 1

cT
(1− e−cT )

)}
For λT → 0, SkewT ' ρSDη1

4
√
V0

For λT →∞, SkewT ' 1
2T
√
V0

(
ρSDη1
κ + ρLDη2

κ−c (κc − 1)
)

4 Applications and results

In this section, we will use empirical (historical) data to estimate historical Variance Swap variance.
Then, for each of our three models, we will use expressions of Variance Swap variance established
above to calibrate models parameters.

4.1 Historical - Empirical data

For each maturity (θ), We need to estimate the quantity

1

t
< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t= lim

N−>∞

1

N∆t

∑N

i=1
(ln(

V S(ti, ti + θ)

V S(ti−1, ti−1 + θ)
))2

With t0 = 0 and tN = N∆t = t.

Then for each maturity (θ), we need, for every time step, Zero-Strike Variance Swap with matu-
rity (θ). Ideally We should have every day prices on a past period of amount ten years. Unfortunately
we are quite a young institution, and we don’t have data on a so long past period. We thus need to
find some trick to estimate historical Variance Swap (VS).

In [11], Jim Gatheral shows that

E(
1

θ

∫ θ

0

σ2
sds) =

∫ ∞
−∞

σ2
BS(z)N ′(z)dz (17)

Where N is the cumulative function of the normal distribution, and σBS is the BS implied volati-
lity for the maturity θ, seen as a function of the log moneyness: z := ln (KF ). And F is the underlying
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forward for the maturity θ.

Now if we consider the following BS implied variance parametrization :

σ2
BS(z) = σ2

0 + αz + βz2

Using (17) we get

E(
1

θ

∫ θ

0

σ2
sds) = σ2

0 + β (18)

In the above parametrization of BS implied variance, α is the variance skew and β is the variance
curve.

We see that the realized variance over a period of time θ does’nt depend on the skew, but on the
curvature. The intuitive explanation of this is that increasing the skew doesn’t impact the implied
volatility average level, but increasing the curvature increases the convexity of the implied volatility,
and increases the volatility out and in the money (on the wings). And that increases the fair level of
the volatility.

Finally if we suppose a small curvature for the implied variance∗∗(β ' 0), we obtain that a good
approximation of realized variance is the at the money forward BS implied variance.

In order to evaluate this approximation, we draw on the next graph the at the money BS implied
variance and the Zero-Strike variance Swap for the same maturity. We used a Monte Carlo Pricer††.

The gap between the two curves above may be the correction term β in the the equation (18).
In expectation we get β ' 1%.

∗∗This hypothesis is plausible within equities
††Double log normal model with 10000 paths, with the set of parameters: {κ = 740.17%; c = 10.48%; η1 = 272%; η2 =

33.2%; ρS = −87.59%; ρL = −50.62%; ρSL = 2.73%;V0 = 5.78%; V̂0 = 5.20%;V∞ = 18.76%}
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For Calibration we used Totem‡‡ monthly data on ATM implied variance, since 1998, to approxi-
mate Variance Swap of maturity θ. We got the following term structure of historical Variance Swap
variance.

‡‡Totem is an institution that gives market consensus from prices provided by different Banks
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4.2 Calibration of mean reversion parameters on the term structure of
implied variance

The calibration then consists in minimizing the quadratic gap between the structure on the previous
figure and the analytic formula of Variance Swap variance calculated in the section above. We used a
dichotomic algorithm called ”Powell algorithm”.

One may notice that this method doesn’t allow us to fit the whole models parameters. In fact
the analytic formula doesn’t include the both correlations between the underlying and the volatility
brownians. We should find some way to estimate those correlations (by calibrating the asymptotic
skew formula for example).

4.2.1 Results of calibration in Balland’s 2 Factors model

In Balland’s 2 factors, we use equation (8). As we can see, λSD and λLD are symmetric in this
formula. And also γSD is symmetric to γLD. To obtain good calibration, we need to initialize λSD
the far as possible from λLD. If not we may find same values for λSD and λLD, also for γSD and γLD.
That is not consistent with the model. In particular we won’t have time scale separation.
We tried some tricks to separate parameters.

• One idea was to initialize mean reversion parameters one far from other as possible, then while
calibrating, we floor λSD and we cap λLD. Results are given here

Euro STOXX 50 NIKKEI 225 S&P 500 FTSE 100

ρ 94.81% 70.24% 13.78% 81.93%
γSD 68.09% 66.52% 62.75% 62.51%
λSD 537.48% 418.02% 481.57% 326.48%
γLD 29.81% 19.36% 22.66% 27.54%
λLD 12.98% 4.41% 11.24% 12.47%

1
λLD

(in years) 7.70609 22.6997 8.89291 8.01821
1

λSD
(in months) 2.23264 2.87068 2.49184 3.67557

λSD
λLD

41.4186 94.8892 42.8257 26.1778
γ2
SD

λSD
0.0862602 0.105862 0.0817623 0.119701

γ2
LD

λLD
0.68493 0.850568 0.456486 0.607962

We get good results for mean reversion parameters, but correlation between short and long term
is globally to high.

• The other idea is that since we want λLD be small, we write a Taylor expansion on (8), with
respect to the variable λLD, around zero. We get

1

t
< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t'

1

θ2

(
4γ2
SD

λ2
SD

(1− e−λSDθ)2
+ 4γ2

LDθ
2(1− 1

2
λLDθ)

2)
+

1

θ2

(
8ργSDγLDθ

λSD
(1− e−λSDθ)(1− 1

2
λLDθ)

)
(19)

By doing that, we break the symmetry between the mean reversion parameters and we fit (19).
This expansion makes the calibration easier, but we still have huge correlation.
What we do at end is to fix

λSDλSD = λ

And
γSDγLD = γ
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At the level of the previous calibration. We replace in (8) and we get

1

t
< ln(V S(., .+ θ)), ln(V S(., .+ θ)) >t=

4

θ2

(
(
γ

λ
)2(

λLD
γLD

)2(1− e−
λ

λLD )2 + (
γLD
λLD

)2(1− e−λLDθ)2

)
+

8ρ
γ

λθ2
(
λLD
γLD

)(1− e−
λ

λLD ) (20)

We finally fit (20) with only three parameters, rather than five, and we get results in table
below

Euro STOXX 50 NIKKEI 225 S&P 500 FTSE 100

ρ 48.29% 38.10% 21.45% 25.07%
γSD 58.80% 58.71% 59.29% 58.53%
λSD 579.39% 420.17% 489.08% 323.89%
γLD 25.07% 17.82% 19.88% 23.60%
λLD 7.33% 2.46% 6.97% 7.70%

1
λLD

(in years) 13.64671653 40.70186292 14.3414 12.9828
1

λSD
(in months) 2.07112949 2.856014052 2.45359 3.70495

λSD
λLD

79.06825678 171.0153894 70.1407 42.05
γ2
SD

λSD
0.059669932 0.082027665 0.0718658 0.10576

γ2
LD

λLD
0.857463351 1.293034209 0.566688 0.722834

Results are satisfactory. Mean reversion parameters are consistent with time scale. To see how
good is the fit, in appendix A, we represent on the same graph historical curve and model curve for
each of our four indexes. We observe that Balland 2 factors (as the others 2 factors models studied in
this report) fit very well the historical term structure of Variance variance.

4.2.2 Results of calibration in Double log normal

We use here the equation (12). There is no particular difficulty and we get the following results

Euro STOXX 50 NIKKEI 225 S&P 500 FTSE 100

ρ 86.48% 29.98% 55.37% 24.83%
κ 740.17% 470.92% 416.93% 296.75%
η1 152.71% 133.35% 135.10% 137.20%
c 10.48% 11.61% 3.13% 14.08%
η2 52.82% 44.96% 36.40% 56.90%

1
κ (in months) 1.621249172 2.548230572 2.878194796 4.043835173

1
c (in years) 9.541347429 8.609778987 31.97482941 7.103836782

η21
κ 0.3150509 0.377593035 0.437799592 0.634356046
η22
c 2.662071152 1.740598882 4.235908524 2.300284848

Results are good enough.
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4.2.3 Results of calibration in Heston 2 Factors

We use equation (13), and we numerically estimate the quantity
∫ t

0
1

V S(s,s+θ)ds as:∫ t

0

1

V S(s, s+ θ)
ds ' ∆t

N∑
i=1

1

V S(ti, ti + θ)

Results of calibration are the follows:

Euro STOXX 50 NIKKEI 225 S&P 500 FTSE 100

ρ 95.94% 98.14% 93.56% 96.39%
κ 1169.89% 507.18% 429.38% 542.22%
η1 24.30% 16.12% 24.25% 17.09%
c 9.56% 4.83% 1.91% 9.64%
η2 12.11% 8.10% 7.57% 10.69%

1
c (in years) 10.4602 20.7 52.2234 10.3759

1
κ (in months) 1.02574 2.36602 2.79475 2.21312

κ
c 122.372 104.986 224.235 56.2601
η21
κ 0.005049 0.00512105 0.0136948 0.00538753
η22
c 0.153314 0.135806 0.299649 0.118622
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Conclusion

In this report, we worked on 3 particular 2 factors stochastic volatility models: Balland’s model,
Gatheral’s model (double Log Normal) and double Heston model. We provided formula for forward
Variance Swap variance. We also provided an asymptotic expansion of the ATMF skew, with respect
to the volatility of volatility parameters around zero.

We estimated empirical Variance Swap by the ATMF implied variance for the same maturity. We
used totem data to calculate term structure of historical Variance Swap variance. Then we used closed
form formula on Variance Swap variance to fit the historical term structure of implied variance. That
allowed us to calibrate some parameters of the models. We got satisfactory results, especially for the
mean reversion parameters.

In the future, the next step of our work could be to use asymptotic skew formula calculated here to
fit the product of the volatility of volatility parameter with the corresponding Underlying-correlation
parameter. We could also calculate asymptotic formula for vanilla prices, as it’s done in [10].
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