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1 Preliminaries

Let consider the following process:
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Then, the realized correlation between S and V yields is
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Cauchy-Schwartz inequality gives
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And then.
|ρt(S, V )| ≤ |ρ|

We find that the absolute value of the average realized correlation is always smaller than the absolute
value of the correlation seen as a model parameter. In particular the historical realized correlation is
always smaller than the absolute value of the correlation seen as the model parameter.

2 Calibration of double lognormal parameters on historical
term structure of Spot-Variance Swap correlation

We use variance Swap rather than underlying’s variance because Variance Swap is liquid, whereas
underlying’s variance is not measurable.

2.1 Historical term structure of Spot-Variance Swap correlation

To calculate the historical correlation between the spot and a Variance Swap for a given maturity θ,
within a period of time [0, t], we use the results in section 1:
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We use monthly data of ATMSpot BS variance, and we get the following term structure of correlation

2.2 Formula for the ”Spot-Variance Swap” correlation in double log nor-
mal model

Let remind that in Gatheral model, variance Swap diffuses as follow:
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The Spot diffusion is given by the equation
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We make the approximation that in expectation, the level of V is close the the Variance Swap. This
leads to

ρt(S, V S(θ)) = E<lnS,lnV S(.,.+θ)>t√
E<lnS,lnS>tE<lnV S(.,.+θ),lnV (.,.+θ)>t

=

ρSη1
κθ (1−e−κθ)+ κρLη2

θ(κ−c)

(
(1−e−cθ)

c − (1−e−κθ)
κ

)
√

η21
κ2θ2

(1−e−κθ)2+ κ2η22
θ2(κ−c)2

(
(1−e−cθ)

c − (1−e−κθ)
κ

)2
+

2ρη1η2
θ2(κ−c)

(1−e−κθ)
(

(1−e−cθ)
c − (1−e−κθ)

κ

) E
∫ t
0

√
Vudu√

tE
∫ t
0
Vudu

And if we neglect the second factor, we finally get
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2.3 Calibration

The calibration consist in finding the parameters such that the analytic formula in equation (1) fits
the historical term structure in section 2.1. For that, we minimize the quadratic gap between the
analytic formula and the historical data. We calibrate only the three parameters ρS , ρL and ρSL
on the historical term structure of correlation. The other parameters are calibrated on Volatility of
Volatility term structure. We thus get the historical calibration set of parameters below.

STOXX50 NIKKEI225 S&P500 FTSE100

κ 763.26% 538.19% 454.91% 334.52%
c 20.35% 8.83% 15.64% 14.21%
ηS 194.39% 160.74% 160.99% 159.22%
ηL 73.89% 52.58% 57.07% 63.37%
ρS -58.00% -53.76% -47.26% -62.42%
ρL -56.73% -44.62% -57.38% -51.99%
ρSL 28.43% 56.14% 7.33% 16.70%
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