
Average Yield to Maturity Curve Construction

Didier KOUOKAP YOUMBI

February 22, 2017

Abstract

This note explains how to interpolate and extrapolate, with respect to
maturity date, the yield to maturity curve (term structure), from market
quotes of yield points, for di�erent maturities

1 Introduction

For a given issuer, market quotes yield to maturities relative to bonds issued.
However these quotes do not clearly follow a smooth line in terms of maturities.
It looks like they are quoting above (cheap) or below (rich) an average smoothed
and time continuous curve (see �gure 1 below).

Figure 1: Market Bund Curve (term structure), as of 13/07/2016. Source:
Bloomberg

The interest of extracting the 'accurate' average yield curve is multiple:
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• It could help a trader assessing on live, which bonds are trading cheap and
which ones are trading expensive; and therefore buy or sell accordingly;

• It could help interpolating/extrapolating bond prices for maturities where
there is no market quote available;

• It could help calculating a measure of liquidity within the given market;

• It could help calculating some Bonds' sensitivities and use this for dynam-
ically hedging a position;

• It sysmatically gives us a forward short rate curve, that could be observed
to predict the most-likely path of the short rate in the future.

Our approach will consist in three steps: In the �rst step we will choose a
model (Vasicek 2 Factors) for the short interst rate. In the second step we
will compute the theoretical bond price in this model, and �nally in the third
step we will calibrate the model parameters to minimise the total squares of
the spreads between the model theoretical yields-to-maturity and the market
quoted yields-to-maturity.

2 The two factors Vasicek model for the short

interest rate

Let r be the value of the short interest rate. Then we will postulate the following
di�usion equations for the short rate:

1

drt = κ (r̄t − rt) dt+ σrdW
r
t

dr̄t = λ (r∞ − r̄t) dt+ σr̄dW
r̄
t (1)

d ≺W r,W r̄ �t = ρ(t)dt

Where:

• r̄ is the level towards which the short interest rate reverts regularly. This
level is it self stochastic, and change with time, following the second equa-
tion in 1

• (W r)t≥0 and (W r̄)t≥0are two brownian motions driving the uncertainties
on the short rate value and its mid-term level respectively. ρ is the instan-
taneous correlation between these two brownian motions. ρ can also be see
as the correlation between the short-term interest rate and the mid-term
interest rate ;

• κ; σr; ;λ; r∞; σrand σr̄ are the model's parameters, and should be
calibrated to �t the market yield term structure displayed on �gure 1
above;
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• κ is the mean reversion parameter. It drives how quick the short rate
process reverts towards its mid-term level r̄. The bigger is κ, the quicker
the short rate process reverts towards r̄;

• r̄ periodically reverts towards r∞with intensity λ;

• r∞ is the long term level towards which the short rate process will converge
(in expectation) after a period of di�usion;

• σr and σr̄ are two parameters driving the instantaneous volatility of r and
r̄ respectively;

Dynamics in equation 1 is referred to as double Vasicek model. In this model the
short rate has a normal distribution, and is therefore allowed to take negative
values. This is really important as we now have rates quoting negative, in the
market (see the short end of the curve in �gure 1 above).

3 Bond Price in two factors Vasicek model

In this section We will derive the expression of a bond price in the two factors
Vasicek model. Let P (t, T ) be the price at time t of a zero-coupon bond of
maturity T : the value of a bond paying no coupon, and paying 1 at maturity
date. By de�nition we have that

P (t, T ) := Et
[
e−
´ T
t
rsds

]
Let B(t, T ) be the price at time t of a bond paying an annual coupon c, η

times per year. Then the fair-value of this bond is (approximatively):

B(t, T ) =

T∑
Ti=T1

c

η
P (t, Ti) + P (t, T )

=
c

η

T∑
Ti=T1

P (t, Ti) + P (t, T )

A quick calculation gives that the value of a zero-coupon bond is

P (t, T ) = e{−τ(t,T,κ)rt−C(t,T )r̄t−D(t,T )r∞+ 1
2V ar(Ñ (t,T ))} (2)

With

τ(t, T, κ) =
1

κ

(
1− e−κ(T−t)

)
C(t, T ) =

κ

κ− λ
(τ(t, T, λ)− τ(t, T, κ))

D(t, T ) = T − t− C(t, T )− τ(t, T, κ)
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And

V ar
(
Ñ(t, T )

)
=

[(σr
κ

)2
+

(
σr̄

κ(κ − λ)

)2

− 2ρ
σrσr̄

κ2(κ − λ)

]
I(t, T, κ)+

(
σr̄

λ(κ − λ)

)2

I(t, T, λ)−2
σr̄

λ(κ − λ)

(
σr̄

κ(κ − λ)
− ρ

σr

κ

)
J(t, T, κ, λ)

I(t, T, κ) = T − t− 2τ(t, T, κ) + τ(t, T, 2κ)

J(t, T, κ, λ) = T − t− τ(t, T, κ)− τ(t, T, λ) + τ(t, T, κ+ λ)

4 From Bond prices to Yield-To-Maturity

Now we have Bonds' prices expressed as a function of the model parameters, we
can compute the Yield-To-Maturity. Let y(t, T ) denote the Yield-To-Maturity
associated with the bond price B(t, T ). Then the relationship between the Bond
price and the Yield-To-Maturity is the following (assuming the interest rate is
compounded):

B(t, T ) =
1

(1 + y)
(T1(t)−t)

[
c (T1(t)− t) +

c

η

1− (1 + y)
−(T−T1(t))

(1 + y)
1
η − 1

]
+

1

(1 + y)
(T−t)

(3)
Where T1(t) is the �rst coupon date from todat (t).
In particular for the zero-coupon Bond we have that

P (t, T ) :=
1

(1 + y)
(T−t)

Given the price, the Yield-To-Maturity is calculated by inverting equation
3. One could use optimised Dichotomy or Newton-Raphson algorithms. In the
case of zero-coupon Bond we have that

y(t, T ) = e−
1

T−t ln(P (t,T )) − 1

=
1

P (t, T )
1

T−t
− 1 (4)

5 Calibration

The calibration will consist in �nding the model parameters' values such that
the sum of the squares of the spread between the model's Yield-To-Maturity
and the market Yield-To-Maturity is minimal.

Bonds quoted in the market are not necessary zero-coupon bonds. For the
sake of simplicity and for reducing the computation time, we might want to
use zero-coupon bonds only, in our calculations. This is possible because from
non-arbitrage arguments, one can assume that it is always possible to exhibit
(i.e determine the price) a zero-coupon bond having the same yield as a given
non-zero-coupon bond. We therefore use equations 2 and 4 to compute the
model Yield-To-Maturity that will �t market points given in Figure 1 above.
Results are given in Figure 2 below:
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(a) Calibrated Parameters

(b) Fit Quality

Figure 2: Market Yield-To-Maturity term structure calibrated
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6 Forward Short Rate

From the zero-coupon bond expression in quation 2, we can derive a forward
short rate term structure as follow:

f(t, T ) = −∂ lnP

∂T
(t, T )

After calculation we get that

f(t, T ) = rt−κτ(t, T, κ) (rt − r∞)+
κ

κ− λ
(κτ(t, T, κ)− λτ(t, T, λ)) (r̄t − r∞)−1

2
V (t, T )

With

V (t, T ) :=

(
σ2
r +

(
σr̄

κ− λ

)2

− 2ρ
σrσr̄

κ− λ

)
τ(t, T, κ)2+

(
σr̄

κ− λ

)2

τ(t, T, λ)2−2
σr̄

κ− λ

(
σr̄

κ− λ
− ρσr

)
τ(t, T, κ)τ(t, T, λ)

Computation Results are given in Figure 3 below:

Figure 3: Model Fit and Forward Short Rate

7 Conclusion

In this note we have explained how to �t a bond market Yield-To-Maturity
curve, assuming a two factors Vasicek model for the short interest rate dynamics.
We have derived a closed form formula for the zero-coupon bond, and for the
forward short interest rate. We have tested the model for various markets, and
the results are satisfactory.
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Appendix: Numerical tests and results

Computation Results

(a) Germany-Bund (b) UK-Gilt

(c) France (d) Italy

Figure 4: Calibration Fit Europe
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Figure 5: Calibration Fit USD - UST

Figure 6: Calibration Fit Japan - JGB
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(a) Sterling Corporates

(b) EDF

Figure 7: Calibration Fit: Corporates
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